Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Commun Biol ; 6(1): 657, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37344639

ABSTRACT

Noonan syndrome (NS), the most common among RASopathies, is caused by germline variants in genes encoding components of the RAS-MAPK pathway. Distinct variants, including the recurrent Ser257Leu substitution in RAF1, are associated with severe hypertrophic cardiomyopathy (HCM). Here, we investigated the elusive mechanistic link between NS-associated RAF1S257L and HCM using three-dimensional cardiac bodies and bioartificial cardiac tissues generated from patient-derived induced pluripotent stem cells (iPSCs) harboring the pathogenic RAF1 c.770 C > T missense change. We characterize the molecular, structural, and functional consequences of aberrant RAF1-associated signaling on the cardiac models. Ultrastructural assessment of the sarcomere revealed a shortening of the I-bands along the Z disc area in both iPSC-derived RAF1S257L cardiomyocytes and myocardial tissue biopsies. The aforementioned changes correlated with the isoform shift of titin from a longer (N2BA) to a shorter isoform (N2B) that also affected the active force generation and contractile tensions. The genotype-phenotype correlation was confirmed using cardiomyocyte progeny of an isogenic gene-corrected RAF1S257L-iPSC line and was mainly reversed by MEK inhibition. Collectively, our findings uncovered a direct link between a RASopathy gene variant and the abnormal sarcomere structure resulting in a cardiac dysfunction that remarkably recapitulates the human disease.


Subject(s)
Cardiomyopathy, Hypertrophic , Noonan Syndrome , Proto-Oncogene Proteins c-raf , Humans , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Cardiomyopathy, Hypertrophic/pathology , Germ-Line Mutation , Myocytes, Cardiac/metabolism , Noonan Syndrome/genetics , Noonan Syndrome/complications , Noonan Syndrome/metabolism , Signal Transduction , Proto-Oncogene Proteins c-raf/genetics
2.
Cardiovasc Res ; 119(7): 1568-1582, 2023 07 04.
Article in English | MEDLINE | ID: mdl-36869774

ABSTRACT

AIMS: A key event in the regulation of cardiac contraction and relaxation is the phosphorylation of phospholamban (PLN) that relieves the inhibition of the sarco/endoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a). PLN exists in an equilibrium between monomers and pentamers. While only monomers can inhibit SERCA2a by direct interaction, the functional role of pentamers is still unclear. This study investigates the functional consequences of PLN pentamerization. METHODS AND RESULTS: We generated transgenic mouse models expressing either a PLN mutant that cannot form pentamers (TgAFA-PLN) or wild-type PLN (TgPLN) in a PLN-deficient background. TgAFA-PLN hearts demonstrated three-fold stronger phosphorylation of monomeric PLN, accelerated Ca2+ cycling of cardiomyocytes, and enhanced contraction and relaxation of sarcomeres and whole hearts in vivo. All of these effects were observed under baseline conditions and abrogated upon inhibition of protein kinase A (PKA). Mechanistically, far western kinase assays revealed that PLN pentamers are phosphorylated by PKA directly and independent of any subunit exchange for free monomers. In vitro phosphorylation of synthetic PLN demonstrated that pentamers even provide a preferred PKA substrate and compete with monomers for the kinase, thereby reducing monomer phosphorylation and maximizing SERCA2a inhibition. However, ß-adrenergic stimulation induced strong PLN monomer phosphorylation in TgPLN hearts and sharp acceleration of cardiomyocyte Ca2+ cycling and haemodynamic values that now were indistinguishable from TgAFA-PLN and PLN-KO hearts. The pathophysiological relevance of PLN pentamerization was evaluated using transverse aortic constriction (TAC) to induce left ventricular pressure overload. Compared to TgPLN, TgAFA-PLN mice demonstrated reduced survival after TAC, impaired cardiac haemodynamics, failure to respond to adrenergic stimulation, higher heart weight, and increased myocardial fibrosis. CONCLUSIONS: The findings show that PLN pentamerization greatly impacts on SERCA2a activity as it mediates the full range of PLN effects from maximum inhibition to full release of SERCA2a function. This regulation is important for myocardial adaptation to sustained pressure overload.


Subject(s)
Calcium , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Mice , Animals , Calcium/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Calcium-Binding Proteins/metabolism , Myocytes, Cardiac/metabolism , Mice, Transgenic , Phosphorylation , Cyclic AMP-Dependent Protein Kinases/metabolism , Adrenergic Agents/metabolism , Sarcoplasmic Reticulum/metabolism
3.
J Mol Cell Cardiol ; 173: 47-60, 2022 12.
Article in English | MEDLINE | ID: mdl-36150524

ABSTRACT

Diabetes mellitus type 2 is associated with adverse clinical outcome after myocardial infarction. To better understand the underlying causes we here investigated sarcomere protein function and its calcium-dependent regulation in the non-ischemic remote myocardium (RM) of diabetic mice (db/db) after transient occlusion of the left anterior descending coronary artery. Before and 24 h after surgery db/db and non-diabetic db/+ underwent magnetic resonance imaging followed by histological and biochemical analyses of heart tissue. Intracellular calcium transients and sarcomere function were measured in isolated cardiomyocytes. Active and passive force generation was assessed in skinned fibers and papillary muscle preparations. Before ischemia and reperfusion (I/R), beat-to-beat calcium cycling was depressed in diabetic cardiomyocytes. Nevertheless, contractile function was preserved owing to increased myofilament calcium sensitivity and higher responsiveness of myocardial force production to ß-adrenergic stimulation in db/db compared to db/+. In addition, protein kinase C activity was elevated in db/db hearts leading to strong phosphorylation of the titin PEVK region and increased titin-based tension of myofilaments. I/R impaired the function of whole hearts and RM sarcomeres in db/db to a larger extent than in non-diabetic db/+, and we identified several reasons. First, the amplitude and the kinetics of cardiomyocyte calcium transients were further reduced in the RM of db/db. Underlying causes involved altered expression of calcium regulatory proteins. Diabetes and I/R additively reduced phospholamban S16-phosphorylation by 80% (P < 000.1) leading to strong inhibition of the calcium ATPase SERCA2a. Second, titin stiffening was only observed in the RM of db/+, but not in the RM of db/db. Finally, db/db myofilament calcium sensitivity and force generation upon ß-adrenergic stimulation were no longer enhanced over db/+ in the RM. The findings demonstrate that impaired cardiomyocyte calcium cycling of db/db hearts is compensated by increased myofilament calcium sensitivity and increased titin-based stiffness prior to I/R. In contrast, sarcomere function of the RM 24 h after I/R is poor because both these compensatory mechanisms fail and myocyte calcium handling is further depressed.


Subject(s)
Diabetes Mellitus, Experimental , Myocardial Infarction , Mice , Animals , Connectin/metabolism , Calcium/metabolism , Diabetes Mellitus, Experimental/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocardial Infarction/metabolism , Reperfusion , Adrenergic Agents , Myocardial Contraction
5.
J Mol Cell Cardiol ; 119: 28-39, 2018 06.
Article in English | MEDLINE | ID: mdl-29674140

ABSTRACT

Changes in the nonischemic remote myocardium of the heart contribute to left ventricular dysfunction after ischemia and reperfusion (I/R). Understanding the underlying mechanisms early after I/R is crucial to improve the adaptation of the viable myocardium to increased mechanical demands. Here, we investigated the role of myocyte Ca2+ handling in the remote myocardium 24 h after 60 min LAD occlusion. Cardiomyocytes isolated from the basal noninfarct-related parts of wild type mouse hearts demonstrated depressed beat-to-beat Ca2+ handling. The amplitude of the Ca2+ transients as well as the kinetics of Ca2+ transport were reduced by up to 25%. These changes were associated with impaired sarcomere contraction. While expression levels of Ca2+ regulatory proteins were unchanged in remote myocardium compared to the corresponding regions of sham-operated hearts, mobility shift analyses of phosphorylated protein showed 2.9 ±â€¯0.4-fold more unphosphorylated phospholamban (PLN) monomers, the PLN species that inhibits the Ca2+ ATPase SERCA2a (P ≤ 0.001). Phospho-specific antibodies revealed normal phosphorylation of PLN at T17 in remote myocardium, but markedly reduced phosphorylation at its PKA-dependent phosphorylation site, S16 (P ≤ 0.01). The underlying cause involved enhanced activity of protein phosphatases, particularly PP2A (P ≤ 0.01). In contrast, overall PKA activity was normal. The PLN interactome, as determined by co-immunoprecipitation and mass spectrometry, and the phosphorylation state of PKA targets other than PLN were also unchanged. Isoproterenol enhanced cellular Ca2+ cycling much stronger in remote myocytes than in healthy controls and improved sarcomere function. We conclude that the reduced phosphorylation state of PLN at S16 impairs myocyte Ca2+ cycling in the remote myocardium 24 h after I/R and contributes to contractile dysfunction.


Subject(s)
Calcium Signaling/genetics , Myocardial Infarction/genetics , Reperfusion Injury/genetics , Ventricular Dysfunction, Left/genetics , Animals , Calcium/metabolism , Calcium-Binding Proteins/genetics , Humans , Mice , Myocardial Contraction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phosphorylation , Protein Phosphatase 2/genetics , Reperfusion Injury/pathology , Sarcomeres/genetics , Sarcomeres/metabolism , Sarcomeres/pathology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Ventricular Dysfunction, Left/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...