Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 11: 163, 2020.
Article in English | MEDLINE | ID: mdl-32117297

ABSTRACT

Mast cells (MCs) are important sensor and effector cells of the immune system that are involved in many physiological and pathological conditions. Increasing evidence suggests that they also play an important role in bone metabolism and bone disorders. MCs are located in the bone marrow and secrete a wide spectrum of mediators, which can be rapidly released upon activation of mature MCs following their differentiation in mucosal or connective tissues. Many of these mediators can exert osteocatabolic effects by promoting osteoclast formation [e.g., histamine, tumor necrosis factor (TNF), interleukin-6 (IL-6)] and/or by inhibiting osteoblast activity (e.g., IL-1, TNF). By contrast, MCs could potentially act in an osteoprotective manner by stimulating osteoblasts (e.g., transforming growth factor-ß) or reducing osteoclastogenesis (e.g., IL-12, interferon-γ). Experimental studies investigating MC functions in physiological bone turnover using MC-deficient mouse lines give contradictory results, reporting delayed or increased bone turnover or no influence depending on the mouse model used. By contrast, the involvement of MCs in various pathological conditions affecting bone is evident. MCs may contribute to the pathogenesis of primary and secondary osteoporosis as well as inflammatory disorders, including rheumatoid arthritis and osteoarthritis, because increased numbers of MCs were found in patients suffering from these diseases. The clinical observations could be largely confirmed in experimental studies using MC-deficient mouse models, which also provide mechanistic insights. MCs also regulate bone healing after fracture by influencing the inflammatory response toward the fracture, vascularization, bone formation, and callus remodeling by osteoclasts. This review summarizes the current view and understanding of the role of MCs on bone in both physiological and pathological conditions.


Subject(s)
Bone Diseases/metabolism , Bone Diseases/pathology , Bone and Bones/metabolism , Mast Cells/metabolism , Mast Cells/pathology , Animals , Humans
2.
Dis Model Mech ; 10(12): 1399-1409, 2017 12 19.
Article in English | MEDLINE | ID: mdl-28982680

ABSTRACT

Although a strong association between psychiatric and somatic disorders is generally accepted, little is known regarding the interrelationship between mental and skeletal health. Although depressive disorders have been shown to be strongly associated with osteoporosis and increased fracture risk, evidence from post-traumatic stress disorder (PTSD) patients is less consistent. Therefore, the present study investigated the influence of chronic psychosocial stress on bone using a well-established murine model for PTSD. C57BL/6N mice (7 weeks old) were subjected to chronic subordinate colony housing (CSC) for 19 days, whereas control mice were singly housed. Anxiety-related behavior was assessed in the open-field/novel-object test, after which the mice were euthanized to assess endocrine and bone parameters. CSC mice exhibited increased anxiety-related behavior in the open-field/novel-object test, increased adrenal and decreased thymus weights, and unaffected plasma morning corticosterone. Microcomputed tomography and histomorphometrical analyses revealed significantly reduced tibia and femur lengths, increased growth-plate thickness and reduced mineral deposition at the growth plate, suggesting disturbed endochondral ossification during long-bone growth. This was associated with reduced Runx2 expression in hypertrophic chondrocytes in the growth plate. Trabecular thicknesses and bone mineral density were significantly increased in CSC compared to singly housed mice. Tyrosine hydroxylase expression was increased in bone marrow cells located at the growth plates of CSC mice, implying that local adrenergic signaling might be involved in the effects of CSC on the skeletal phenotype. In conclusion, chronic psychosocial stress negatively impacts endochondral ossification in the growth plate, affecting both longitudinal and appositional bone growth in adolescent mice.


Subject(s)
Aging/pathology , Bone Development , Stress, Psychological/pathology , Adrenal Glands/metabolism , Animals , Anxiety/physiopathology , Anxiety/psychology , Behavior, Animal , Catecholamines/metabolism , Chronic Disease , Cortical Bone/growth & development , Femur/metabolism , Growth Plate/pathology , Housing, Animal , Male , Mice, Inbred C57BL , Osteogenesis , Signal Transduction
3.
J Bone Miner Res ; 32(12): 2431-2444, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28777474

ABSTRACT

Mast cells, important sensor and effector cells of the immune system, may influence bone metabolism as their number is increased in osteoporotic patients. They are also present during bone fracture healing with currently unknown functions. Using a novel c-Kit-independent mouse model of mast cell deficiency, we demonstrated that mast cells did not affect physiological bone turnover. However, they triggered local and systemic inflammation after fracture by inducing release of inflammatory mediators and the recruitment of innate immune cells. In later healing stages, mast cells accumulated and regulated osteoclast activity to remodel the bony fracture callus. Furthermore, they were essential to induce osteoclast formation after ovariectomy. Additional in vitro studies revealed that they promote osteoclastogenesis via granular mediators, mainly histamine. In conclusion, mast cells are redundant in physiologic bone turnover but exert crucial functions after challenging the system, implicating mast cells as a potential target for treating inflammatory bone disorders. © 2017 American Society for Bone and Mineral Research.


Subject(s)
Fractures, Bone/pathology , Inflammation/pathology , Mast Cells/pathology , Osteoclasts/pathology , Animals , Bone Resorption/pathology , Bony Callus/pathology , Chemokines/metabolism , Female , Fracture Healing , Histamine/metabolism , Male , Mice , Osteogenesis , Ovariectomy , Periosteum/pathology , Phenotype
4.
J Orthop Res ; 33(8): 1235-41, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25876530

ABSTRACT

Abatement of fracture-related pain is important in patient welfare. However, the frequently used non-steroidal anti-inflammatory drugs are considered to impair fracture healing through blockade of cyclooxygenase-2. An alternative for fracture-related pain treatment may be blockade of nerve growth factor (NGF)/neurotrophic tyrosine kinase receptor type 1 (TrkA) signaling. Because the effect of blocking this signal-pathway on bone healing has not been extensively investigated, we addressed this issue by applying neutralizing antibodies that target NGF and TrkA, respectively, in a mouse fracture model. Mice with a knock-in for human TrkA underwent femur osteotomy and were randomly allocated to phosphate-buffered-saline, anti-NGF-antibody, or anti-TrkA-antibody treatment. The analgesic effect of the antibodies was determined from the activity and the ground reaction force of the operated limb. The effect of antibody administration on fracture healing was assessed by histomorphometry, micro-computed tomography, and biomechanics. NGF/TrkA-signaling blockade had no negative effect on fracture healing as callus formation and maturation were not altered. Mice treated with anti-TrkA antibody displayed significantly greater activity on post-operative day 2 compared to PBS treatment indicating effective analgesia. Our data indicate, that blockade of NGF/TrkA signaling via specific neutralizing antibodies for pain reduction during fracture healing does not influence fracture healing.


Subject(s)
Analgesia , Fracture Healing/physiology , Nerve Growth Factors/physiology , Receptor, trkA/physiology , Signal Transduction/physiology , Animals , Fractures, Bone/physiopathology , Male , Mice , Nerve Growth Factors/antagonists & inhibitors , Pain/drug therapy , Pain/physiopathology , Receptor, trkA/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...