Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Physiol Biochem ; 57(4): 279-297, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37597169

ABSTRACT

BACKGROUND/AIMS: Kynurenic acid (KYNA), a tryptophan metabolite along the kynurenine pathway, is an endogenous antagonist of glutamate ionotropic excitatory amino acid (EAA) receptors and the α7 nicotinic acetylcholine receptor (nAChR). The involvement of KYNA in various pathological conditions and during the aging process is significant. KYNA synthesis from L-kynurenine (L-KYN), through the action of several kynurenine aminotransferases (KATs), is present in the central nervous system (CNS) and periphery of mammals. We were interested in investigating the ability of the brain and peripheral organs of Helix pomatia snails to synthesize KYNA, in an in vitro study. In comparative studies between rat and snail, we looked for the synthesis of KYNA in the liver. We then looked for an effect of age on KYNA synthesis. METHODS: Ten shell parameters of the Helix pomatia snail were used to establish an Age Rating Scale (ARS), i.e. body weight, shell weight, shell length, width and height, shell opening length and width, lip width, number of shell turns and external shell growth rings. An age of the snails was determined according to the ARS and the snails were divided into three groups, i.e. young, middle and old age. Homogenates of dissected regions, i.e. cerebral ganglia (CG), subpharyngeal ganglia (SG) consisting of pedal, visceral and pleural ganglia, heart and liver, were examined. KYNA was measured by high performance liquid chromatography (HPLC) and KAT activities were measured by an enzymatic method. RESULTS: With respect to ARS, an evaluation of the age of the snails between young (1-2 years), middle (5-7 years) and old (9-13 years) showed significant differences (p<0.001). Analysis of KYNA levels in different snail tissues, i.e. CG, SG, heart and liver, showed an occurrence in the low femtomolar range. Marked and significant increases of KYNA were found in the liver of middle and old age groups. In the SG, KYNA decreased significantly with age. There were no differences in KYNA levels between groups in CG and heart. The lowest KAT activity was found in CG and SG (5 pmol/mg/h), while in heart and liver the values were visibly higher (between 8 and 80 pmol/mg/h). Only in the liver, and exceptionally only for KAT I, the activity increased significantly with age, i.e. up to 14 years. No age-related changes in KAT I, II and III activities were found in CG and SG. Snail liver shows a different pattern of KAT activities compared to the rat liver. CONCLUSION: Regions of the CNS and periphery of the snail Helix pomatia are able to synthesize KYNA due to KAT activities. In the snail liver, KAT I activity increased with age. Notably, there was no age-related increase in KAT activities in the heart and especially in the CNS of Helix pomatia, indicating significant differences from mammals. A moderate KYNA metabolism in the Helix pomatia snail in the periods studied, up to 14 years, could be a physiological phenomenon that protects organs from possible functional insufficiency due to high KYNA levels, as has been suggested. It is reasonable to search for the factor(s) that could regulate the concentration of KYNA in the body of the snail.


Subject(s)
Kynurenic Acid , Kynurenine , Animals , Rats , Liver , Transaminases , Biotin , Ganglia , Glutamic Acid , Mammals
2.
Neurosignals ; 29(1): 24-34, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34590795

ABSTRACT

BACKGROUND/AIMS: The moust symptoms of piglets infected with Encephalomyocarditis virus (EMCV) are related to breeding difficulty, circulation insufficiency, depression and occurrence of high lethality. An increase of tryptophan metabolism in the periphery and in the central nervous system (CNS) in human and non-human subjects with inflammatory diseases has been suggested. We investigated an alterations of tryptophan metabolite i.e. kynurenic acid (KYNA) level in the serum of piglets after EMC virus infection. In addition, we investigated the markers of immune stimulation i.e. neopterin and ß2-microglobulin. METHODS: KYNA was determined by high performance liquid chromatography method, while neopterin and ß2-microglobulin by ELISA method. Piglets with an age of 8 weeks were infected intranasal and orally with the EMC virus. Blood samples were collected before virus inoculation at day 0 (control) and at 1, 2, 3 and 4 days post inoculation (DPI) and piglets as control subjects were used, too. RESULTS: In EMCV infected piglets we observed a time dependent alteration of investigated parameters. KYNA level increased significantly and at 3 DPI was 341% of CO, p<0.001 and at 4 DPI an enhancement was 242% of CO, p<0.001, respectively. Neopterin increased moderately after EMCV infection and at 4 DPI was 130% of CO, p<0.05. Serum ß2-microglobulin was slightly lowered and at 4 DPI was 86% of CO, p<0.05. Present data indicate an marked increase of kynurenine metabolism in the periphery after EMCV infection and an moderate activation of immune system. CONCLUSION: A marked increase of KYNA and a moderate enhancement of neopterin indicate sensibility of kynurenine metabolism to EMCV infection. Lowering of ß2-microgobulin might relate to development of events leading to the lethality. We suggest that due to viral infection an increase of KYNA might contribute to the inpairment of organs in the periphery and CNS function and might participate by sudden death.


Subject(s)
Encephalomyocarditis virus , Kynurenic Acid , Animals , Biomarkers , Kynurenine , Neopterin , Swine
3.
Neurosignals ; 28(1): 1-13, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32153151

ABSTRACT

BACKGROUND/AIMS: Fluids of the human body such as serum, cerebrospinal fluid and saliva contain a wide variety of proteins. Because kynurenic acid (KYNA) has been detected in human saliva, we wondered if KYNA could be produced in saliva by KYNA-synthesising enzymes, namely the kynurenine aminotransferases KAT I, KAT II and KAT III. METHODS: Thirty samples of human saliva from control volunteers were investigated. KAT activity was measured in the presence of 1 mM pyruvate and 2 µM or 100 µM L-kynurenine and KYNA production was assessed by high-performance liquid chromatography. RESULTS: Saliva dose- and time-dependently produced KYNA. KAT activity ranged between 900 and 1050 pmol/mg protein/h: 900 for KAT I, 950 for KAT III and 1050 for KAT II. KYNA was synthesised in saliva at a physiological concentration of 2 µM L-kynurenine and at a higher concentration of 100 µM. Investigation of the distributions of the enzymes in saliva revealed that KAT I, KAT II and KAT III activity in a centrifuge-obtained pellet ranged from ~100% to 120%; in the supernatant, the percentage was between 0% and 20%. We observed a nonsignificant tendency for lower KAT activity in women's saliva than in men's. KATs present in saliva were sensitive to the GABA-transaminase inhibitor γ-acetylenic GABA, with a concentration of 100 µM γ-acetylenic GABA significantly blocking the formation of KYNA (50% of control, p < 0.05). Furthermore, KATs in saliva were sensitive to anti-dementia drugs, such as D-cycloserine and cerebrolysin, in an in vitro study. CONCLUSION: Our data revealed for the first time the presence of KAT I, KAT II and KAT III proteins in human saliva. KAT activity was found mostly in pelleted cells, suggesting their presence in salivary gland cells. KAT proteins in saliva are sensitive to drugs blocking KYNA formation. Our data indicate the presence of cells in saliva involved in the biochemical machinery of the kynurenine pathway. Their role in the digestive process remains to be clarified. We speculate that modulation of KYNA formation in the mouth by food and/or drugs might affect glutamate neurotransmission and cholinergic activity in the CNS and/or periphery and play a role under physiological as well as pathological conditions.


Subject(s)
Saliva/chemistry , Saliva/enzymology , Transaminases/analysis , Transaminases/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Cats , Child , Child, Preschool , Cycloserine/pharmacology , Female , Humans , Male , Middle Aged , Saliva/drug effects , Transaminases/antagonists & inhibitors , Young Adult
4.
Neurosignals ; 27(1): 1-11, 2019.
Article in English | MEDLINE | ID: mdl-31059212

ABSTRACT

BACKGROUND/AIMS: Normal pressure hydrocephalus (NPH) is a potentially reversible neurological syndrome commonly characterized by gait disturbance, urinary incontinence, and dementia. Hydrocephalus e-vacuo (He-v) is also characterized by the occurrence of dementia but does not show gait disturbance or urinary incontinence and has no evident cerebrospinal fluid (CSF) pressure elevation. Kynurenic acid (KYNA), an endogenous metabolite of the L-kynurenine (L-KYN) pathway of L-tryptophan (L-TRP) degradation, is an antagonist of glutamate N-methyl-D-aspartic acid and alpha-7 nicotinic cholinergic receptors that have been linked to dementia. We investigated KYNA, L-KYN, and L-TRP levels in human CSF and serum during the aging process in 30 healthy control individuals. In addition, clinical parameters and L-TRP metabolites in CSF and serum were evaluated in four patients with NPH and five with He-v. METHODS: KYNA, L-KYN, and L-TRP levels in CSF and serum were determined using highperformance liquid chromatography. RESULTS: Healthy controls showed a significant decrease in serum albumin with age. Compared with their corresponding controls and unlike patients with He-v, patients with NPH (age ≤ 50 years) had significant increases in CSF protein (241%, p < 0.001), CSF albumin (246%, p < 0.001), CSF IgG (328%, p < 0.001), and CSF:serum IgG (321%, p < 0.001) and CSF:serum albumin (257%, p < 0.001) ratios. Controls had significant increases in KYNA, L-KYN, and L-TRP levels in the CSF with advancing age but not in the serum. Compared with the corresponding controls, KYNA levels were significantly increased in the CSF of patients with NPH (141%, p < 0.05) and He-v (225%; p < 0.01). Additionally, the serum levels of KYNA were increased in patients with NPH and He-v to 161% and 156% of controls, respectively (both p < 0.01). The serum levels of L-KYN and L-TRP were significantly reduced in patients with He-v but not in patients with NPH. C-reactive protein, as a marker of inflammation, was significantly increased in the serum of patients with He-v but not in patients with NPH, compared with the corresponding controls. CONCLUSION: The aging process is related to elevated CSF levels of KYNA, L-KYN, and L-TRP levels. There are significant differences in clinical parameters between the two forms of hydrocephalus and these differences might have diagnostic utility. The occurrence of dementia in patients with either form of hydrocephalus might be at least partly related to elevated KYNA levels in the CNS and/or periphery.

5.
Int J Tryptophan Res ; 9: 17-29, 2016.
Article in English | MEDLINE | ID: mdl-27226722

ABSTRACT

Previously, we demonstrated that the endogenous glutamate receptor antagonist kynurenic acid dose-dependently and significantly affected rat heart mitochondria. Now we have investigated the effects of L-tryptophan, L-kynurenine, 3-hydroxykynurenine and kynurenic, anthranilic, 3-hydroxyanthranilic, xanthurenic and quinolinic acids on respiratory parameters (ie, state 2, state 3), respiratory control index (RC) and ADP/oxygen ratio in brain, liver and heart mitochondria of adult rats. Mitochondria were incubated with glutamate/malate (5 mM) or succinate (10 mM) and in the presence of L-tryptophan metabolites (1 mM) or in the absence, as control. Kynurenic and anthranilic acids significantly reduced RC values of heart mitochondria in the presence of glutamate/malate. Xanthurenic acid significantly reduced RC values of brain mitochondria in the presence of glutamate/malate. Furthermore, 3-hydroxykynurenine and 3-hydroxyanthranilic acid decreased RC values of brain, liver and heart mitochondria using glutamate/malate. In the presence of succinate, 3-hydroxykynurenine and 3-hydroxyanthranilic acid affected RC values of brain mitochondria, whereas in liver and heart mitochondria only 3-hydroxykynurenine lowered RC values significantly. Furthermore, lowered ADP/oxygen ratios were observed in brain mitochondria in the presence of succinate with 3-hydroxykynurenine and 3-hydroxyanthranilic acid, and to a lesser extent with glutamate/malate. In addition, 3-hydroxyanthranilic acid significantly lowered the ADP/oxygen ratio in heart mitochondria exposed to glutamate/malate, while in the liver mitochondria only a mild reduction was found. Tests of the influence of L-tryptophan and its metabolites on complex I in liver mitochondria showed that only 3-hydroxykynurenine, 3-hydroxyanthranilic acid and L-kynurenine led to a significant acceleration of NADH-driven complex I activities. The data indicate that L-tryptophan metabolites had different effects on brain, liver and heart mitochondria. Alterations of L-tryptophan metabolism might have an impact on the bioenergetic activities of brain, liver and/or heart mitochondria and might be involved in the development of clinical symptoms such as cardiomyopathy, hepatopathy and dementia.

SELECTION OF CITATIONS
SEARCH DETAIL
...