Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 48(1): 171-181, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33275194

ABSTRACT

Cheetahs (Acinonyx jubatus) are listed as vulnerable on the International Union for Conservation of Nature Red List of Threatened Species. Threats include loss of habitat, human-wildlife conflict and illegal wildlife trade. In South Africa, the export of wild cheetah is a restricted activity under the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), however, limited legal trade is permitted of animals born to captive parents. To effectively monitor the legal and illegal trade in South Africa, it was thus essential to develop a validated molecular test. Here, we designed a single nucleotide polymorphism (SNP) array for cheetah from Double Digest Restriction Associated DNA sequencing data for individual identification and parentage testing. In order to validate the array, unrelated individuals and 16 family groups consisting of both parents and one to three offspring were genotyped using the Applied Biosystems™ QuantStudio™ 12K Flex Real-Time PCR System. In addition, parentage assignments were compared to microsatellite data. Cross-species amplification was tested in various felids and cheetah sub-species in order to determine the utility of the SNP array in other species. We obtained successful genotyping results for 218 SNPs in cheetah (A. j. jubatus) with an optimal DNA input concentration ranging from 10 to 30 ng/µl. The combination of SNPs had a higher resolving power for individual identification compared to microsatellites and provided high assignment accuracy in known pedigrees. Cross-species amplification in other felids was determined to be limited. However, the SNP array demonstrated a clear genetic discrimination of two cheetah subspecies tested here. We conclude that the described SNP array is suitable for accurate parentage assignment and provides an important traceability tool for forensic investigations of cheetah trade.


Subject(s)
Acinonyx/genetics , Conservation of Natural Resources , Genome/genetics , Genomics , Animals , Animals, Wild/genetics , Commerce , Ecosystem , Endangered Species , Genotype , Humans , Polymorphism, Single Nucleotide/genetics , South Africa
2.
PLoS One ; 14(10): e0213961, 2019.
Article in English | MEDLINE | ID: mdl-31626669

ABSTRACT

Biological diversity is being lost at unprecedented rates, with genetic admixture and introgression presenting major threats to biodiversity. Our ability to accurately identify introgression is critical to manage species, obtain insights into evolutionary processes, and ultimately contribute to the Aichi Targets developed under the Convention on Biological Diversity. The current study concerns roan antelope, the second largest antelope in Africa. Despite their large size, these antelope are sensitive to habitat disturbance and interspecific competition, leading to the species being listed as Least Concern but with decreasing population trends, and as extinct over parts of its range. Molecular research identified the presence of two evolutionary significant units across their sub-Saharan range, corresponding to a West African lineage and a second larger group which includes animals from East, Central and Southern Africa. Within South Africa, one of the remaining bastions with increasing population sizes, there are a number of West African roan antelope populations on private farms, and concerns are that these animals hybridize with roan that naturally occur in the southern African region. We used a suite of 27 microsatellite markers to conduct admixture analysis. Our results indicate evidence of hybridization, with our developed tests using a simulated dataset being able to accurately identify F1, F2 and non-admixed individuals at threshold values of qi > 0.80 and qi > 0.85. However, further backcrosses were not always detectable with backcrossed-Western roan individuals (46.7-60%), backcrossed-East, Central and Southern African roan individuals (28.3-45%) and double backcrossed (83.3-98.3%) being incorrectly classified as non-admixed. Our study is the first to confirm ongoing hybridization in this within this iconic African antelope, and we provide recommendations for the future conservation and management of this species.


Subject(s)
Antelopes/genetics , Biodiversity , Biological Evolution , Genetic Introgression , Microsatellite Repeats , Africa, Northern , Africa, Southern , Animals , Female , Male , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...