Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-23944586

ABSTRACT

The phase-field crystal model (PFC model) resolves systems on atomic length scales and diffusive time scales and lies in between standard phase-field modeling and atomistic methods. More recently a hyperbolic or modified PFC model was introduced to describe fast (propagative) and slow (diffusive) dynamics. We present a finite-element method for solving the hyperbolic PFC equation, introducing an unconditionally stable time integration algorithm. A spatial discretization is used with the traditional C^{0}-continuous Lagrange elements with quadratic shape functions. The space-time discretization of the PFC equation is second-order accurate in time and is shown analytically to be unconditionally stable. Numerical simulations are used to show a monotonic decrease of the free energy during the transition from the homogeneous state to stripes. Benchmarks on modeling patterns in two-dimensional space are carried out. The benchmarks show the applicability of the proposed algorithm for determining equilibrium states. Quantitatively, the proposed algorithm is verified for the problem of lattice parameter and velocity selection when a crystal invades a homogeneous unstable liquid.

SELECTION OF CITATIONS
SEARCH DETAIL
...