Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Innovation (Camb) ; 5(2): 100573, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38379792

ABSTRACT

Differences in progress across sustainable development goals (SDGs) are widespread globally; meanwhile, the rising call for prioritizing specific SDGs may exacerbate such gaps. Nevertheless, how these progress differences would influence global sustainable development has been long neglected. Here, we present the first quantitative assessment of SDGs' progress differences globally by adopting the SDGs progress evenness index. Our results highlight that the uneven progress across SDGs has been a hindrance to sustainable development because (1) it is strongly associated with many public health risks (e.g., air pollution), social inequalities (e.g., gender inequality, modern slavery, wealth gap), and a reduction in life expectancy; (2) it is also associated with deforestation and habitat loss in terrestrial and marine ecosystems, increasing the challenges related to biodiversity conservation; (3) most countries with low average SDGs performance show lower progress evenness, which further hinders their fulfillment of SDGs; and (4) many countries with high average SDGs performance also showcase stagnation or even retrogression in progress evenness, which is partly ascribed to the antagonism between climate actions and other goals. These findings highlight that while setting SDGs priorities may be more realistic under the constraints of multiple global stressors, caution must be exercised to avoid new problems from intensifying uneven progress across goals. Moreover, our study reveals that the urgent needs regarding SDGs of different regions seem complementary, emphasizing that regional collaborations (e.g., demand-oriented carbon trading between SDGs poorly performed and well-performed countries) may promote sustainable development achievements at the global scale.

2.
Nat Commun ; 13(1): 3024, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35680858

ABSTRACT

Reducing greenhouse gas emissions in food systems is becoming more challenging as food is increasingly consumed away from producer regions, highlighting the need to consider emissions embodied in trade in agricultural emissions accounting. To address this, our study explores recent trends in trade-adjusted agricultural emissions of food items at the global, regional, and national levels. We find that emissions are largely dependent on a country's consumption patterns and their agricultural emission intensities relative to their trading partners'. The absolute differences between the production-based and trade-adjusted emissions accounting approaches are especially apparent for major agricultural exporters and importers and where large shares of emission-intensive items such as ruminant meat, milk products and rice are involved. In relative terms, some low-income and emerging and developing economies with consumption of high emission intensity food products show large differences between approaches. Similar trends are also found under various specifications that account for trade and re-exports differently. These findings could serve as an important element towards constructing national emissions reduction targets that consider trading partners, leading to more effective emissions reductions overall.


Subject(s)
Climate Change , Greenhouse Gases , Agriculture , Animals , Milk , Ruminants
3.
Sustain Sci ; 17(4): 1459-1472, 2022.
Article in English | MEDLINE | ID: mdl-34659581

ABSTRACT

The Sustainable Development Goals (SDGs) were adopted by the United Nations in 2015 as part of the "2030 Agenda for Sustainable Development" and aim to address issues ranging from poverty and economic growth to climate change. Efforts to tackle one issue can support or hinder progress towards others, often with complex systemic interactions. Thus, each of the SDGs and their corresponding targets may contribute as levers or hurdles towards achieving other SDGs and targets. Based on SDG indicator data, we create a systems model considering influence among the SDGs and their targets. Once assessed within a system, we find that more SDGs and their corresponding targets act as levers towards achieving other goals and targets rather than as hurdles. In particular, efforts towards SDGs 5 (Gender Equality) and 17 (Partnerships for the Goals) may accelerate progress, while SDGs 10 (Reduced Inequalities) and 16 (Peace, Justice and Strong Institutions) are shown to create potential hurdles. The model results can be used to help promote supportive interactions and overcome hindering ones in the long term. Supplementary Information: The online version contains supplementary material available at 10.1007/s11625-021-01040-8.

4.
Sci Rep ; 11(1): 20309, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645902

ABSTRACT

When inferring on the magnitude of future heat-related mortality due to climate change, human adaptation to heat should be accounted for. We model long-term changes in minimum mortality temperatures (MMT), a well-established metric denoting the lowest risk of heat-related mortality, as a function of climate change and socio-economic progress across 3820 cities. Depending on the combination of climate trajectories and socio-economic pathways evaluated, by 2100 the risk to human health is expected to decline in 60% to 80% of the cities against contemporary conditions. This is caused by an average global increase in MMTs driven by long-term human acclimatisation to future climatic conditions and economic development of countries. While our adaptation model suggests that negative effects on health from global warming can broadly be kept in check, the trade-offs are highly contingent to the scenario path and location-specific. For high-forcing climate scenarios (e.g. RCP8.5) the maintenance of uninterrupted high economic growth by 2100 is a hard requirement to increase MMTs and level-off the negative health effects from additional scenario-driven heat exposure. Choosing a 2 °C-compatible climate trajectory alleviates the dependence on fast growth, leaving room for a sustainable economy, and leads to higher reductions of mortality risk.


Subject(s)
Climate Change , Global Warming , Hot Temperature , Thermotolerance , Calibration , Cities , Climate , Geography , Humans , Population Dynamics , Risk , Social Class , Temperature , Urban Population
5.
PLoS One ; 16(7): e0254601, 2021.
Article in English | MEDLINE | ID: mdl-34260653

ABSTRACT

Previous research has identified a predictive model of how a nation's distribution of gross domestic product (GDP) among agriculture (a), industry (i), and services (s) changes as a country develops. Here we use this national model to analyze the composition of GDP for US Metropolitan Statistical Areas (MSA) over time. To characterize the transfer of GDP shares between the sectors in the course of economic development we explore a simple system of differential equations proposed in the country-level model. Fitting the model to more than 120 MSAs we find that according to the obtained parameters MSAs can be classified into 6 groups (consecutive, high industry, re-industrializing; each of them also with reversed development direction). The consecutive transfer (a → i → s) is common but does not represent all MSAs examined. At the 95% confidence level, 40% of MSAs belong to types exhibiting an increasing share of GDP from agriculture. In California, such MSAs, which we classify as part of an agriculture renaissance, are found in the Central Valley.


Subject(s)
Economic Development , Agriculture , Cities , Gross Domestic Product , Urban Population
6.
Spat Spatiotemporal Epidemiol ; 37: 100422, 2021 06.
Article in English | MEDLINE | ID: mdl-33980410

ABSTRACT

Child malnutrition is indisputably a multi-faceted phenomenon. Comprehending the aforesaid crucial issue this paper intended to identify climatic and non-climatic factors for the spatial variation of malnutrition prevalence in Bangladesh. The climatic data on temperature and rainfall are obtained from the WorldClim dataset. We obtained a set of global climate layers that included monthly data on minimum temperature, maximum temperature, mean temperature, and rainfall for the period 1960-1990, at a spatial resolution up to 30 'onds (~ 1 × 1 km at the equator). The data are extracted at the district level using the zonal-statistics in QGIS. This study performed a spatial lag regression to evaluate association of malnutrition with climate characteristics and other factors. The prevalence of malnutrition exhibited substantial association with temperature and precipitation. Food production, water access, improved sanitation, literacy, road density, solvency ratio and GDP had a significant association with the spatial variation of malnutrition in Bangladesh.


Subject(s)
Malnutrition , Bangladesh/epidemiology , Child , Cross-Sectional Studies , Humans , Malnutrition/complications , Malnutrition/epidemiology , Prevalence , Spatial Regression
7.
PLoS One ; 16(1): e0245771, 2021.
Article in English | MEDLINE | ID: mdl-33481927

ABSTRACT

Urban scaling and Zipf's law are two fundamental paradigms for the science of cities. These laws have mostly been investigated independently and are often perceived as disassociated matters. Here we present a large scale investigation about the connection between these two laws using population and GDP data from almost five thousand consistently-defined cities in 96 countries. We empirically demonstrate that both laws are tied to each other and derive an expression relating the urban scaling and Zipf exponents. This expression captures the average tendency of the empirical relation between both exponents, and simulations yield very similar results to the real data after accounting for random variations. We find that while the vast majority of countries exhibit increasing returns to scale of urban GDP, this effect is less pronounced in countries with fewer small cities and more metropolises (small Zipf exponent) than in countries with a more uneven number of small and large cities (large Zipf exponent). Our research puts forward the idea that urban scaling does not solely emerge from intra-city processes, as population distribution and scaling of urban GDP are correlated to each other.


Subject(s)
Cities , Population Density , Cities/economics , Models, Statistical
8.
PLoS One ; 15(11): e0242479, 2020.
Article in English | MEDLINE | ID: mdl-33206711

ABSTRACT

Combining global gridded population and fossil fuel based CO2 emission data at 1 km scale, we investigate the spatial origin of CO2 emissions in relation to the population distribution within countries. We depict the correlations between these two datasets by a quasi-Lorenz curve which enables us to discern the individual contributions of densely and sparsely populated regions to the national CO2 emissions. We observe pronounced country-specific characteristics and quantify them using an indicator resembling the Gini-index. As demonstrated by a robustness test, the Gini-index for each country arise from a compound distribution between the population and emissions which differs among countries. Relating these indices with the degree of socio-economic development measured by per capita Gross Domestic Product (GDP) at purchase power parity, we find a strong negative correlation between the two quantities with a Pearson correlation coefficient of -0.71. More specifically, this implies that in developing countries locations with large population tend to emit relatively more CO2, and in developed countries the opposite tends to be the case. Based on the relation to urban scaling, we discuss the implications for CO2 emissions from cities. Our results show that general statements with regard to the (in)efficiency of large cities should be avoided as it is subject to the socio-economic development of respective countries. Concerning the political relevance, our results suggest a differentiated spatial prioritization in deploying climate change mitigation measures in cities for developed and developing countries.


Subject(s)
Carbon Dioxide/analysis , Environmental Monitoring/methods , Cities , Climate Change , Developed Countries , Developing Countries , Economic Development , Fossil Fuels , Gross Domestic Product
9.
Environ Sci Technol ; 54(17): 10551-10560, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32701271

ABSTRACT

Cities will play a key role in the grand challenge of nourishing a growing global population, because, due to their population density, they set the demand. To ensure that food systems are sustainable, as well as nourishing, one solution often suggested is to shorten their supply chains toward a regional rather than a global basis. While such regional systems may have a range of costs and benefits, we investigate the mitigation potential of regionalized urban food systems by examining the greenhouse gas emissions associated with food transport. Using data on food consumption for 7108 urban administrative units (UAUs), we simulate total transport emissions for both regionalized and globalized supply chains. In regionalized systems, the UAUs' demands are fulfilled by peripheral food production, whereas to simulate global supply chains, food demand is met from an international pool (where the origin can be any location globally). We estimate that regionalized systems could reduce current emissions from food transport. However, because longer supply chains benefit from maximizing comparative advantage, this emission reduction would require closing yield gaps, reducing food waste, shifting toward diversified farming, and consuming seasonal produce. Regionalization of food systems will be an essential component to limit global warming to well below 2 °C in the future.


Subject(s)
Climate Change , Refuse Disposal , Agriculture , Cities , Food , Food Supply , Greenhouse Effect
10.
Sci Total Environ ; 728: 138451, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32570309

ABSTRACT

Most South Asian countries have challenges in ensuring water, energy, and food (WEF) security, which are often interacting positively or negatively. To address these challenges, the nexus approach provides a framework to identify the interactions of the WEF sectors as an integrated system. However, most nexus studies only qualitatively discuss the interactions between these sectors. This study conducts a systematic analysis of the WEF security nexus in South Asia by using open data sources at the country scale. We analyze interactions between the WEF sectors statistically, defining positive and negative correlations between the WEF security indicators as synergies and trade-offs, respectively. By creating networks of the synergies and trade-offs, we further identify most positively and negatively influencing indicators in the WEF security nexus. We observe a larger share of trade-offs than synergies within the water and energy sectors and a larger share of synergies than trade-offs among the WEF sectors for South Asia. However, these observations vary across the South Asian countries. Our analysis highlights that strategies on promoting sustainable energy and discouraging fossil fuel use could have overall positive effects on the WEF security nexus in the countries. This study provides evidence for considering the WEF security nexus as an integrated system rather than just a combination of three different sectors or securities.

11.
Nat Commun ; 11(1): 2647, 2020 05 27.
Article in English | MEDLINE | ID: mdl-32461547

ABSTRACT

The canopy layer urban heat island (UHI) effect, as manifested by elevated near-surface air temperatures in urban areas, exposes urban dwellers to additional heat stress in many cities, specially during heat waves. We simulate the urban climate of various generated cities under the same weather conditions. For mono-centric cities, we propose a linear combination of logarithmic city area and logarithmic gross building volume, which also captures the influence of building density. By studying various city shapes, we generalise and propose a reduced form to estimate UHI intensities based only on the structure of urban sites, as well as their relative distances. We conclude that in addition to the size, the UHI intensity of a city is directly related to the density and an amplifying effect that urban sites have on each other. Our approach can serve as a UHI rule of thumb for the comparison of urban development scenarios.

12.
Sci Total Environ ; 695: 133560, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31422334

ABSTRACT

Human mortality shows a pronounced temperature dependence. The minimum mortality temperature (MMT) as a characteristic point of the temperature-mortality relationship is influenced by many factors. As MMT estimates are based on case studies, they are sporadic, limited to data-rich regions, and their drivers have not yet been clearly identified across case studies. This impedes the elaboration of spatially comprehensive impact studies on heat-related mortality and hampers the temporal transfer required to assess climate change impacts. Using 400 MMTs from cities, we systematically establish a generalised model that is able to estimate MMTs (in daily apparent temperature) for cities, based on a set of climatic, topographic and socio-economic drivers. A sigmoid model prevailed against alternative model setups due to having the lowest Akaike Information Criterion (AICc) and the smallest RMSE. We find the long-term climate, the elevation, and the socio-economy to be relevant drivers of our MMT sample within the non-linear parametric regression model. A first model application estimated MMTs for 599 European cities (>100 000 inhabitants) and reveals a pronounced decrease in MMTs (27.8-16 °C) from southern to northern cities. Disruptions of this pattern across regions of similar mean temperatures can be explained by socio-economic standards as noted for central eastern Europe. Our alternative method allows to approximate MMTs independently from the availability of daily mortality records. For the first time, a quantification of climatic and non-climatic MMT drivers has been achieved, which allows to consider changes in socio-economic conditions and climate. This work contributes to the comparability among MMTs beyond location-specific and regional limits and, hence, towards a spatially comprehensive impact assessment for heat-related mortality.


Subject(s)
Climate Change , Environmental Exposure/statistics & numerical data , Mortality/trends , Temperature , Cities/epidemiology , Humans
13.
Nat Commun ; 10(1): 3204, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324796

ABSTRACT

The question of whether urbanization contributes to increasing carbon dioxide emissions has been mainly investigated via scaling relationships with population or population density. However, these approaches overlook the correlations between population and area, and ignore possible interactions between these quantities. Here, we propose a generalized framework that simultaneously considers the effects of population and area along with possible interactions between these urban metrics. Our results significantly improve the description of emissions and reveal the coupled role between population and density on emissions. These models show that variations in emissions associated with proportionate changes in population or density may not only depend on the magnitude of these changes but also on the initial values of these quantities. For US areas, the larger the city, the higher is the impact of changing its population or density on its emissions; but population changes always have a greater effect on emissions than population density.

14.
Sci Total Environ ; 656: 80-89, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30504031

ABSTRACT

Annual greenhouse gas emissions have increased more than threefold between 1950 and 2014, posing a major threat to the integrity of the entire earth system and subsequently to humankind. Consequently, roadmaps towards low-carbon pathways are urgently needed. Our study contributes to a more detailed understanding of the dynamics of country based emission patterns and uses them to discuss prospective low-carbon pathways for countries. As availability of databases on sectoral emissions substantially increased, we employ machine learning techniques to classify emission features and pathways. By doing so, 18 representative emission patterns are derived. Overall emissions from seven sectors and for 167 countries covering the time span from 1950 to 2014 have been used in the analyses. The following significant trends can be observed: a) increasing per capita emissions due to growing fossil fuel use in many parts of the world, b) a decline in per capita emissions in some countries, and c) a shift in the emission shares, i.e., a reduction of agricultural and land use contributions in certain regions. Using the emission patterns, their dynamics, and best performing countries as role models, we show the possibility for gaining a decent human development without significantly increasing per capita emissions.

15.
Sci Data ; 5: 180034, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29557944

ABSTRACT

The economic assessment of the impacts of storm surges and sea-level rise in coastal cities requires high-level information on the damage and protection costs associated with varying flood heights. We provide a systematically and consistently calculated dataset of macroscale damage and protection cost curves for the 600 largest European coastal cities opening the perspective for a wide range of applications. Offering the first comprehensive dataset to include the costs of dike protection, we provide the underpinning information to run comparative assessments of costs and benefits of coastal adaptation. Aggregate cost curves for coastal flooding at the city-level are commonly regarded as by-products of impact assessments and are generally not published as a standalone dataset. Hence, our work also aims at initiating a more critical discussion on the availability and derivation of cost curves.

16.
Sci Rep ; 7(1): 4791, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28684850

ABSTRACT

Urban climate is determined by a variety of factors, whose knowledge can help to attenuate heat stress in the context of ongoing urbanization and climate change. We study the influence of city size and urban form on the Urban Heat Island (UHI) phenomenon in Europe and find a complex interplay between UHI intensity and city size, fractality, and anisometry. Due to correlations among these urban factors, interactions in the multi-linear regression need to be taken into account. We find that among the largest 5,000 cities, the UHI intensity increases with the logarithm of the city size and with the fractal dimension, but decreases with the logarithm of the anisometry. Typically, the size has the strongest influence, followed by the compactness, and the smallest is the influence of the degree to which the cities stretch. Accordingly, from the point of view of UHI alleviation, small, disperse, and stretched cities are preferable. However, such recommendations need to be balanced against e.g. positive agglomeration effects of large cities. Therefore, trade-offs must be made regarding local and global aims.

17.
Environ Sci Technol ; 50(8): 4269-77, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27054575

ABSTRACT

Avoiding food loss and waste may counteract the increasing food demand and reduce greenhouse gas (GHG) emissions from the agricultural sector. This is crucial because of limited options available to increase food production. In the year 2010, food availability was 20% higher than was required on a global scale. Thus, a more sustainable food production and adjusted consumption would have positive environmental effects. This study provides a systematic approach to estimate consumer level food waste on a country scale and globally, based on food availability and requirements. The food requirement estimation considers demographic development, body weights, and physical activity levels. Surplus between food availability and requirements of a given country is considered as food waste. The global food requirement changed from 2,300 kcal/cap/day to 2,400 kcal/cap/day during the last 50 years, while food surplus grew from 310 kcal/cap/day to 510 kcal/cap/day. Similarly, GHG emissions related to the food surplus increased from 130 Mt CO2eq/yr to 530 Mt CO2eq/yr, an increase of more than 300%. Moreover, the global food surplus may increase up to 850 kcal/cap/day, while the total food requirement will increase only by 2%-20% by 2050. Consequently, GHG emissions associated with the food waste may also increase tremendously to 1.9-2.5 Gt CO2eq/yr.


Subject(s)
Agriculture , Food Supply/statistics & numerical data , Greenhouse Effect , Body Weight , Carbon Dioxide/analysis , Climate , Food , Gases/analysis , Humans
18.
Article in English | MEDLINE | ID: mdl-23944515

ABSTRACT

We consider the sectoral composition of a country's gross domestic product (GDP), i.e., the partitioning into agrarian, industrial, and service sectors. Exploring a simple system of differential equations, we characterize the transfer of GDP shares between the sectors in the course of economic development. The model fits for the majority of countries providing four country-specific parameters. Relating the agrarian with the industrial sector, a data collapse over all countries and all years supports the applicability of our approach. Depending on the parameter ranges, country development exhibits different transfer properties. Most countries follow three of eight characteristic paths. The types are not random but show distinct geographic and development patterns.

19.
Article in English | MEDLINE | ID: mdl-23679380

ABSTRACT

Urban agglomerations exhibit complex emergent features of which Zipf's law, i.e., a power-law size distribution, and fractality may be regarded as the most prominent ones. We propose a simplistic model for the generation of citylike structures which is solely based on the assumption that growth is more likely to take place close to inhabited space. The model involves one parameter which is an exponent determining how strongly the attraction decays with the distance. In addition, the model is run iteratively so that existing clusters can grow (together) and new ones can emerge. The model is capable of reproducing the size distribution and the fractality of the boundary of the largest cluster. Although the power-law distribution depends on both, the imposed exponent and the iteration, the fractality seems to be independent of the former and only depends on the latter. Analyzing land-cover data, we estimate the parameter-value γ≈2.5 for Paris and its surroundings.

20.
PLoS One ; 6(12): e29262, 2011.
Article in English | MEDLINE | ID: mdl-22216227

ABSTRACT

Although developing countries are called to participate in CO(2) emission reduction efforts to avoid dangerous climate change, the implications of proposed reduction schemes in human development standards of developing countries remain a matter of debate. We show the existence of a positive and time-dependent correlation between the Human Development Index (HDI) and per capita CO(2) emissions from fossil fuel combustion. Employing this empirical relation, extrapolating the HDI, and using three population scenarios, the cumulative CO(2) emissions necessary for developing countries to achieve particular HDI thresholds are assessed following a Development As Usual approach (DAU). If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8). In particular, 300 Gt of cumulative CO(2) emissions between 2000 and 2050 are estimated to be necessary for the development of 104 developing countries in the year 2000. This value represents between 20 % to 30 % of previously calculated CO(2) budgets limiting global warming to 2 °C. These constraints and results are incorporated into a CO(2) reduction framework involving four domains of climate action for individual countries. The framework reserves a fair emission path for developing countries to proceed with their development by indexing country-dependent reduction rates proportional to the HDI in order to preserve the 2 °C target after a particular development threshold is reached. For example, in each time step of five years, countries with an HDI of 0.85 would need to reduce their per capita emissions by approx. 17% and countries with an HDI of 0.9 by 33 %. Under this approach, global cumulative emissions by 2050 are estimated to range from 850 up to 1100 Gt of CO(2). These values are within the uncertainty range of emissions to limit global temperatures to 2 °C.


Subject(s)
Air Pollutants/analysis , Carbon Dioxide/analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...