Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38999996

ABSTRACT

Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy are powerful analytical techniques widely used separately in different fields of study. Integrating these two powerful spectroscopic techniques into one device represents a groundbreaking advance in multimodal imaging. This new combination which merges the molecular vibrational information from Raman spectroscopy with the ability of FTIR to study polar bonds, creates a unique and complete analytical tool. Through a detailed examination of the microscope's operation and case studies, this article illustrates how this integrated analytical instrument can provide more thorough and accurate analysis than traditional methods, potentially revolutionising analytical sample characterisation. This article aims to present the features and possible uses of a unified instrument merging FTIR and Raman spectroscopy for multimodal imaging. It particularly focuses on the technological progress and collaborative benefits of these two spectroscopic techniques within the microscope system. By emphasising this approach's unique benefits and improved analytical capabilities, the authors aim to illustrate its applicability in diverse scientific and industrial sectors.


Subject(s)
Microscopy , Multimodal Imaging , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Spectroscopy, Fourier Transform Infrared/methods , Multimodal Imaging/methods , Multimodal Imaging/instrumentation , Microscopy/methods , Microscopy/instrumentation , Humans
2.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612865

ABSTRACT

In recent years, the extensive exploration of Gold Nanoparticles (AuNPs) has captivated the scientific community due to their versatile applications across various industries. With sizes typically ranging from 1 to 100 nm, AuNPs have emerged as promising entities for innovative technologies. This article comprehensively reviews recent advancements in AuNPs research, encompassing synthesis methodologies, diverse applications, and crucial insights into their toxicological profiles. Synthesis techniques for AuNPs span physical, chemical, and biological routes, focusing on eco-friendly "green synthesis" approaches. A critical examination of physical and chemical methods reveals their limitations, including high costs and the potential toxicity associated with using chemicals. Moreover, this article investigates the biosafety implications of AuNPs, shedding light on their potential toxic effects on cellular, tissue, and organ levels. By synthesizing key findings, this review underscores the pressing need for a thorough understanding of AuNPs toxicities, providing essential insights for safety assessment and advancing green toxicology principles.


Subject(s)
Gold , Metal Nanoparticles , Gold/toxicity , Metal Nanoparticles/toxicity , Industry , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...