Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Earth Planet Sci Lett ; 535: 116088, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-34334802

ABSTRACT

Refractory inclusions [Ca-Al-rich Inclusions (CAIs) and Amoeboid Olivine Aggregates (AOAs)] in primitive meteorites are the oldest Solar System solids. They formed in the hot inner protoplanetary disk and, as such, provide insights into the earliest disk dynamics and physicochemical processing of the dust and gas that accreted to form the Sun and its planetary system. Using the short-lived 26Al to 26Mg decay system, we show that bulk refractory inclusions in CV (Vigarano-type) and CR (Renazzo-type) carbonaceous chondrites captured at least two distinct 26Al-rich (26Al/27Al ratios of ~5 × 10-5) populations of refractory inclusions characterized by different initial 26Mg/24Mg isotope compositions (µ26Mg*0). Another 26Al-poor CAI records an even larger µ26Mg*0 deficit. This suggests that formation of refractory inclusions was punctuated and recurrent, possibly associated with episodic outbursts from the accreting proto-Sun lasting as short as <8000 yr. Our results support a model in which refractory inclusions formed close to the hot proto-Sun and were subsequently redistributed to the outer disk, beyond the orbit of Jupiter, plausibly via stellar outflows with progressively decreasing transport efficiency. We show that the magnesium isotope signatures in refractory inclusions mirrors the presolar grain record, demonstrating a mutual exclusivity between 26Al enrichments and large nucleosynthetic Mg isotope effects. This suggests that refractory inclusions formed by incomplete thermal processing of presolar dust, thereby inheriting a diluted signature of their isotope systematics. As such, they record snapshots in the progressive sublimation of isotopically anomalous presolar carriers through selective thermal processing of young dust components from the proto-Solar molecular cloud. We infer that 26Al-rich refractory inclusions incorporated 26Al-rich dust which formed <5 Myr prior to our Sun, whereas 26Al-poor inclusions (such as FUN- and PLAC-type CAIs) incorporated >10 Myr old dust.

6.
Geochim Cosmochim Acta ; 246: 109-122, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30846886

ABSTRACT

We have found two refractory inclusions in the CO3.00 carbonaceous chondrite Dominion Range (DOM) 08006 that appear to be primary condensates from the early solar nebula. One, inclusion 56-1, contains the first four phases predicted to form by equilibrium gas-solid condensation: corundum; hibonite; grossite; and perovskite. The other, 31-2, contains nine predicted condensate phases: hibonite; grossite; perovskite; melilite; spinel; FeNi metal; diopside; forsterite; and enstatite. Except for melilite/spinel, the phases occur in the predicted sequence from core to rim of the inclusion, which has an irregular shape inconsistent with a molten stage. This inclusion preserves the most complete record of condensation in the early solar nebula that has yet been found. The physical evidence reported here supports equilibrium condensation calculations that predict the observed sequence as well as the assumptions upon which they are based, such as total pressure (~10-3 atm), bulk system composition (solar), and C-O-H proportions. All phases in both inclusions and the associated ferromagnesian silicates are 16O-rich, with ∆17O between -25 and -20‰, implying that this is the original composition of the vast majority of primary condensates and that 16O-poor compositions observed in many isotopically heterogeneous inclusions are largely due to subsequent isotopic exchange. While the nebula was well-mixed with respect to oxygen isotopic composition, clearly resolved anomalies in Ca and Ti isotopic compositions indicate that some isotopic heterogeneity existed early and was preserved during condensation. Inclusion 31-2 did not incorporate live 26Al and has nucleosynthetic anomalies in the heavy Ca and Ti isotopes (i.e., δ48Ca = 4.3 ± 1.9‰; δ50Ti = 8.8 ± 2.0‰). In contrast, inclusion 56-1 has radiogenic 26Mg excesses yielding a (26Al/27Al)0 ratio of (1.0 ± 0.1) × 10-5 and negative nucleosynthetic isotopic anomalies in Ca (δ48Ca = -10.3 ± 4.2‰) and Ti (δ50Ti = -4.3 ± 2.9‰). Thus, it represents a deviation from the mutual exclusivity relationship between 26Al incorporation and large nucleosynthetic anomalies. The reservoirs in which these inclusions formed had similar O-isotopic and different Al-, Ca- and Ti-isotopic compositions, suggesting that while the CAI-forming region was well-mixed with respect to oxygen isotopic composition, clearly resolved anomalies in Ca and Ti isotopic compositions indicate that some isotopic heterogeneity existed and was preserved during condensation.

9.
Geochim Cosmochim Acta ; 201: 320-330, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-29151614

ABSTRACT

It is inferred that magnesian non-porphyritic chondrules in the CB (Bencubbin-type) carbonaceous chondrites formed in an impact generated plume of gas and melt at 4562.49 ± 0.21 Ma (Bollard et al., 2015) and could be suitable for the absolute age normalization of relative chronometers. Here xenon isotopic compositions of neutron irradiated chondrules from the CB chondrites Gujba and Hammadah al Hamra (HH) 237 have been analyzed in an attempt to determine closure time of their I-Xe isotope systematics. One of the HH 237 chondrules, #1, yielded a well-defined I-Xe isochron that corresponds to a closure time of 0.29 ± 0.16 Ma after the Shallowater aubrite standard. Release profiles and diffusion properties of radiogenic 129*Xe and 128*Xe, extracted from this chondrule by step-wise pyrolysis, indicate presence of two iodine host phases with distinct activation energies of 73 and 120 kcal/mol. In spite of the activation energy differences, the I-Xe isotope systematics of these two phases closed simultaneously, suggesting rapid heating and cooling (possibly quenching) of the CB chondrules. The release profiles of U-fission Xe and I-derived Xe correlate in the high temperature host phase supporting simultaneous closure of 129I-129Xe and 207Pb-206Pb systematics. The absolute I-Xe age of Shallowater standard is derived from the observed correlation between I-Xe and Pb-Pb ages in a number of samples. It is re-evaluated here using Pb-Pb ages adjusted for an updated 238U/235U ratio of 137.794 and meteorite specific U-isotope ratios. With the addition of the new data for HH 237 chondrule #1, the re-evaluated absolute I-Xe age of Shallowater is 4562.4 ± 0.2 Ma. The absolute I-Xe age of the HH 237 chondrule #1 is 4562.1 ± 0.3 Ma, in good agreement with U-corrected Pb-Pb ages of the Gujba chondrules (Bollard et al., 2015) and HH 237 silicates (Krot et al., 2005). All I-Xe data used here, and in previous estimates of the absolute age of Shallowater, are calculated using 15.7 ± 0.6 Ma value for 129I half-life. The slopes of I-Xe - Pb-Pb correlation lines plotted for different sets of samples for Shallowater normalization are always ≤1. Assuming uranium half-life values are correct; this restricts the half-life of 129I to ≤15.7 Ma.

10.
Science ; 291(5509): 1776-9, 2001 Mar 02.
Article in English | MEDLINE | ID: mdl-11230691

ABSTRACT

Chondrules in the metal-rich meteorites Hammadah al Hamra 237 and QUE 94411 have recorded highly energetic thermal events that resulted in complete vaporization of a dusty region of the solar nebula (dust/gas ratio of about 10 to 50 times solar). These chondrules formed under oxidizing conditions before condensation of iron-nickel metal, at temperatures greater than or equal to 1500 K, and were isolated from the cooling gas before condensation of moderately volatile elements such as manganese, sodium, potassium, and sulfur. This astrophysical environment is fundamentally different from conventional models for chondrule formation by localized, brief, repetitive heating events that resulted in incomplete melting of solid precursors initially residing at ambient temperatures below approximately 650 K.

11.
Science ; 282(5395): 1865-7, 1998 Dec 04.
Article in English | MEDLINE | ID: mdl-9836631

ABSTRACT

Fayalite grains in chondrules in the oxidized, aqueously altered CV3 chondrite Mokoia have large excesses of radiogenic chromium-53. These excesses indicate the in situ decay of short-lived manganese-53 (half-life = 3.7 million years) and define an initial 53Mn/55Mn ratio of 2.32 (+/-0.18) x 10(-6). This ratio is comparable to values for carbonates in CI and CM chondrites and for several classes of differentiated meteorites. Mokoia fayalites formed 7 to 16 million years after Allende calcium-aluminum-rich inclusions, during hydrothermal activity on a geologically active asteroid after chondritic components had ceased forming in the solar nebula.


Subject(s)
Meteoroids , Minor Planets , Chromium Isotopes/analysis , Manganese/analysis , Oxides/analysis , Radioisotopes
12.
Meteorit Planet Sci ; 33(4): 709-19, 1998 Jul.
Article in English | MEDLINE | ID: mdl-11543072

ABSTRACT

Carbonates in Martian meteorite Allan Hills 84001 occur as grains on pyroxene grain boundaries, in crushed zones, and as disks, veins, and irregularly shaped grains in healed pyroxene fractures. Some carbonate disks have tapered Mg-rich edges and are accompanied by smaller, thinner and relatively homogeneous, magnesite microdisks. Except for the microdisks, all types of carbonate grains show the same unique chemical zoning pattern on MgCO3-FeCO3-CaCO3 plots. This chemical characteristic and the close spatial association of diverse carbonate types show that all carbonates formed by a similar process. The heterogeneous distribution of carbonates in fractures, tapered shapes of some disks, and the localized occurrence of Mg-rich microdisks appear to be incompatible with growth from an externally derived CO2-rich fluid that changed in composition over time. These features suggest instead that the fractures were closed as carbonates grew from an internally derived fluid and that the microdisks formed from a residual Mg-rich fluid that was squeezed along fractures. Carbonate in pyroxene fractures is most abundant near grains of plagioclase glass that are located on pyroxene grain boundaries and commonly contain major or minor amounts of carbonate. We infer that carbonates in fractures formed from grain boundary carbonates associated with plagiociase that were melted by impact and dispersed into the surrounding fractured pyroxene. Carbonates in fractures, which include those studied by McKay et al. (1996), could not have formed at low temperatures and preserved mineralogical evidence for Martian organisms.


Subject(s)
Carbonates/analysis , Magnesium/analysis , Meteoroids , Minerals/analysis , Calcium Carbonate/analysis , Electron Probe Microanalysis , Iron/analysis , Microscopy, Electron , Silicon Dioxide , Temperature
13.
Nature ; 387(6631): 377-9, 1997 May 22.
Article in English | MEDLINE | ID: mdl-9163421

ABSTRACT

The meteorite ALH84001--a shocked igneous rock of probable martian origin-contains chemically and isotopically heterogeneous carbonate globules, associated with which are organic and inorganic structures that have been interpreted as possible fossil remains of ancient martian biota. A critical assumption underlying this suggestion is that the carbonates formed from low-temperature fluids penetrating the cracks and voids of the host rock. Here we report petrological studies of ALH84001 which investigate the effects of shock on the various mineralogical components of the rock. We find that carbonate, plagioclase and silica were melted and partly redistributed by the same shock event responsible for the intense local crushing of pyroxene in the meteorite. Texture and compositional data show that, during the period of shock decompression, monomineralic melts were injected into pyroxene fractures that were subsequently cooled and resealed within seconds. Our results therefore suggest that the carbonates in ALH84001 could not have formed at low temperatures, but instead crystallized from shock-melted material; this conclusion weakens significantly the arguments that these carbonates could host the fossilized remnants of biogenic activity.


Subject(s)
Carbonates/chemistry , Mars , Meteoroids , Aluminum Silicates/chemistry , Glass/chemistry , Hot Temperature , Potassium Compounds/chemistry , Silicates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...