Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 14(6)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35745846

ABSTRACT

Levofloxacin (LFX) is a highly effective anti-tuberculosis drug with a pronounced bactericidal activity against Mycobacterium tuberculosis (Mtb). In this work, an "organic solvent-free" approach has been used for the development of polylactic-co-glycolic acid (PLGA) microparticles and scaffolds containing LFX at a therapeutically significant concentration, providing for its sustained release. To achieve the target, both nonpolar supercritical carbon dioxide and polar supercritical trifluoromethane have been used. By changing the composition, surface morphology, size, and internal structure of the polymer carriers, one can control the kinetics of the LFX release into phosphate buffered saline solutions and physiological media, providing for its acceptable burst and desirable concentration in the prolonged phase. The biocompatibility and bactericidal efficacy of PLGA/LFX carriers assessed both in vitro (against Mtb phagocytosed by macrophages) and in vivo (against inbred BALB/c mice aerogenically infected with Mtb) demonstrated their anti-tuberculosis activity comparable with that of the standard daily intragastric levofloxacin administration. These results make it possible to consider the developed compositions as a promising candidate for anti-tuberculosis control release formulations providing for the further evaluation of their activity against Mtb and their metabolism in vivo over long periods of tuberculosis infection.

2.
Polymers (Basel) ; 13(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806130

ABSTRACT

In this study, the nanoscale transformation of the polylactic-co-glycolic acid (PLGA) internal structure, before and after its supercritical carbon dioxide (sc-CO2) swelling and plasticization, followed by foaming after a CO2 pressure drop, was studied by small-angle X-ray scattering (SAXS) for the first time. A comparative analysis of the internal structure data and porosity measurements for PLGA scaffolds, produced by sc-CO2 processing, on a scale ranging from 0.02 to 1000 µm, was performed by SAXS, helium pycnometry (HP), mercury intrusion porosimetry (MIP) and both "lab-source" and synchrotron X-ray microtomography (micro-CT). This approach opens up possibilities for the wide-scale evaluation, computer modeling, and prediction of the physical and mechanical properties of PLGA scaffolds, as well as their biodegradation behavior in the body. Hence, this study targets optimizing the process parameters of PLGA scaffold fabrication for specific biomedical applications.

3.
J Biomed Mater Res A ; 105(1): 104-109, 2017 01.
Article in English | MEDLINE | ID: mdl-27543196

ABSTRACT

We proposed a novel method of generation of bioresorbable polymeric scaffolds with specified architectonics for tissue engineering using extrusion three-dimensional (3D) printing with solutions of polylactoglycolide in tetraglycol with their subsequent solidifying in aqueous medium. On the basis of 3D computer models, we obtained the matrix structures with interconnected system of pores ranging in size from 0.5 to 500 µm. The results of in vitro studies using cultures of line NIH 3Т3 mouse fibroblasts, floating islet cultures of newborn rabbit pancreas, and mesenchymal stem cells of human adipose tissue demonstrated the absence of cytotoxicity and good adhesive properties of scaffolds in regard to the cell cultures chosen. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 104-109, 2017.


Subject(s)
Fibroblasts/metabolism , Islets of Langerhans/metabolism , Lactic Acid/chemistry , Materials Testing , Polyglycolic Acid/chemistry , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Animals , Fibroblasts/cytology , Islets of Langerhans/cytology , Mice , NIH 3T3 Cells , Polylactic Acid-Polyglycolic Acid Copolymer , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...