Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Soft Matter ; 20(24): 4681-4691, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38739368

ABSTRACT

Geometrical constraints offer a promising strategy for assembling colloidal crystal structures that are not typically observed in bulk or under 2D conditions. Core-softened colloids, in particular, have emerged as versatile chemical building blocks with applications across various scientific and technological areas. In this study, we investigate the behavior of a core-softened model confined between two parallel walls. Employing molecular dynamics simulations, we analyze the system's response under extreme confinement, where only one or two layers of colloids are permitted. The system comprises particles modeled by a ramp-like potential confined within slit nanoslits created by two flat, purely repulsive walls with a lateral side L separated by a distance Lz. Through a systematic analysis of the phase behavior as Lz increases, or as the system undergoes decompression, for different values of L, we identified a mono-to-bilayer transition associated with changes in the colloidal structure. In the monolayer regime, we observed solid phases at lower densities than those observed in the 2D case. Importantly, we demonstrated that confinement at specific Lz values, allowing particle arrangement into two layers, can lead to the emergence of the square phase, which was not observed under monolayer or 2D conditions. By correlating thermodynamic, translational, and orientational ordering, as well as the dynamics of this confined colloidal system, our findings offer valuable insights into the utilization of geometrical constraints to induce and manipulate structural changes.

2.
J Chem Phys ; 158(13): 134501, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37031114

ABSTRACT

The most accepted origin for the water anomalous behavior is the phase transition between two liquids (LLPT) in the supercooled regime connected to the glassy first order phase transition at lower temperatures. Two length scale potentials are an effective approach that has long been employed to understand the properties of fluids with waterlike anomalies and, more recently, the behavior of colloids and nanoparticles. These potentials can be parameterized to have distinct shapes, as a pure repulsive ramp, such as the model proposed by de Oliveira et al. [J. Chem. Phys. 124, 64901 (2006)]. This model has waterlike anomalies despite the absence of LLPT. To unravel how the waterlike anomalies are connected to the solid phases, we employ molecular dynamics simulations. We have analyzed the fluid-solid transition under cooling, with two solid crystalline phases, BCC and HCP, and two amorphous regions being observed. We show how the competition between the scales creates an amorphous cluster in the BCC crystal that leads to amorphization at low temperatures. A similar mechanism is found in the fluid phase, with the system changing from a BCC-like to an amorphous-like structure in the point where a maxima in kT is observed. With this, we can relate the competition between two fluid structures with the amorphous clusterization in the BCC phase. These findings help to understand the origins of waterlike behavior in systems without the liquid-liquid critical point.

3.
J Phys Chem B ; 121(16): 4308-4317, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28376295

ABSTRACT

We explore the self-assembled morphologies of Janus nanoparticles under cylindrical confinement. Langevin dynamics simulations are employed to study the behavior of two types of dimers inside cylinders with distinct radius. The first type of nanoparticle was modeled using one monomer that interacts by a standard Lennard-Jones potential and another monomer that is modeled using a purely repulsive two length scale shoulder potential. The second type is composed by a Lennard-Jones monomer and a repulsive monomer which interacts by the purely repulsive Weeks-Chandler-Andersen potential, which have only one length scale. The two length scale potential used in the first type of nanoparticle models a monomer with competitive interaction. Our results show that the aggregated structures are completely distinct for each type of nanoparticle. Also, our simulations indicate that the cylinder radius can be used to control the type of self-assembled cluster. Small clusters, tubular and donut-like micelles with central holes, with potential application to molecule encapsulation were observed regarding the nanoparticle specificities and the cylinder radii. Also, bilayer lamellae structures were obtained depending on the type of nanoparticle and the cylinder size.

4.
Phys Chem Chem Phys ; 18(41): 28740-28746, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27722613

ABSTRACT

Confinement has been suggested as a tool to tune the self-assembly properties of nanoparticles, surfactants, polymers and colloids. In this way, we explore the phase diagram of Janus nanoparticles confined between two parallel walls using molecular dynamics simulations. A nanoparticle was modeled as a dimer made by one monomer that interacts via a standard Lennard Jones potential and another monomer that is modeled using a two-length scale shoulder potential. This specific design of the nanoparticle exhibits distinct self-assembled structures and a water-like diffusion anomaly in the bulk. Our results indicate that besides the aggregates observed in bulk, new structures are observed under confinement. Also, the dynamic and thermodynamic behavior of the fluid phase is affected. The systems show a reentrant fluid phase and density anomaly. None of these two features were observed in bulk. Our results show that geometrical confinement leads to new structural, thermodynamical and dynamical behavior for this Janus nanoparticle.

5.
Langmuir ; 31(31): 8577-82, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26190234

ABSTRACT

We explore the pressure versus temperature phase diagram of a system of dimeric Janus nanoparticles using molecular dynamics simulations. Each nanoparticle is modeled as a dumbbell which has one monomer that interacts by a standard Lennard-Jones potential while the other monomer interacts by a core-softened potential. The systems composed by particles interacting only by core-softened potential exhibit the density and the diffusion anomalous behavior observed in water while if the particles interact only by the Lennard-Jones potential no anomaly is present. Here we explore if the anomalous behavior is present when half of the particles are modeled by a core-softened potential and half with Lennard-Jones potential. We show that the diffusion anomaly is preserve, while the density anomaly can disappear depending on the nonanomalous monomer characteristics. We also show that the self-assembly structures characteristics of the dumbbell systems are affected by the balance between core-softened and non-core-softened monomers.


Subject(s)
Nanoparticles/chemistry , Water/chemistry , Models, Chemical , Molecular Dynamics Simulation , Pressure , Temperature
6.
J Chem Phys ; 142(13): 134502, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25854248

ABSTRACT

We use molecular dynamics simulations to study how the confinement affects the dynamic, thermodynamic, and structural properties of a confined anomalous fluid. The fluid is modeled using an effective pair potential derived from the ST4 atomistic model for water. This system exhibits density, structural, and dynamical anomalies, and the vapor-liquid and liquid-liquid critical points similar to the quantities observed in bulk water. The confinement is modeled both by smooth and structured walls. The temperatures of extreme density and diffusion for the confined fluid show a shift to lower values while the pressures move to higher amounts for both smooth and structured confinements. In the case of smooth walls, the critical points and the limit between fluid and amorphous phases show a non-monotonic change in the temperatures and pressures when the nanopore size is increase. In the case of structured walls, the pressures and temperatures of the critical points varies monotonically with the pore size. Our results are explained on basis of the competition between the different length scales of the fluid and the wall-fluid interaction.


Subject(s)
Molecular Dynamics Simulation , Phase Transition , Diffusion , Porosity , Pressure , Thermodynamics , Water/chemistry
7.
J Phys Chem B ; 119(1): 291-300, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25494049

ABSTRACT

We explore the structural properties of anomalous fluids confined in a nanopore using molecular dynamics simulations. The fluid is modeled by core-softened (CS) potentials that have a repulsive shoulder and an attractive well at a further distance. Changing the attractive well depth of the fluid-fluid interaction potential, we studied the behavior of the anomalies in the translational order parameter t and excess entropy s(2) for the particles near to the nanopore wall (contact layer) for systems with two or three layers of particles. When the attractive well of the CS potential is shallow, the systems present a three to two layers transition and, additionally to the usual structural anomaly, a new anomalous region in t and s(2). For attractive well deep enough, the systems change from three layers to a bulk-like profile and just one region of anomaly in t and s(2) is observed. Our results are discussed on the basis of the fluid-fluid and fluid-surface interactions.

8.
J Chem Phys ; 141(14): 144502, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25318730

ABSTRACT

The behavior of a confined spherical symmetric anomalous fluid under high external pressure was studied with Molecular Dynamics simulations. The fluid is modeled by a core-softened potential with two characteristic length scales, which in bulk reproduces the dynamical, thermodynamical, and structural anomalous behavior observed for water and other anomalous fluids. Our findings show that this system has a superdiffusion regime for sufficient high pressure and low temperature. As well, our results indicate that this superdiffusive regime is strongly related with the fluid structural properties and the superdiffusion to diffusion transition is a first order phase transition. We show how the simulation time and statistics are important to obtain the correct dynamical behavior of the confined fluid. Our results are discussed on the basis of the two length scales.

9.
Article in English | MEDLINE | ID: mdl-24580175

ABSTRACT

Molecular dynamic simulations were employed to study a waterlike model confined between hydrophobic and hydrophilic plates. The phase behavior of this system is obtained for different distances between the plates and particle-plate potentials. For both hydrophobic and hydrophilic walls, there are the formation of layers. Crystallization occurs at lower temperature at the contact layer than at the middle layer. In addition, the melting temperature decreases as the plates become more hydrophobic. Similarly, the temperatures of maximum density and extremum diffusivity decrease with hydrophobicity.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Microfluidics/methods , Models, Chemical , Nanoparticles/chemistry , Nanoparticles/radiation effects , Water/chemistry , Computer Simulation , Temperature
10.
J Chem Phys ; 139(15): 154502, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24160522

ABSTRACT

Molecular dynamics simulations were used to study the structural and dynamical properties of a water-like core-softened fluid under confinement when the confining media is rigid or fluctuating. The fluid is modeled using a two-length scale potential that reproduces, in the bulk, the anomalous behavior observed in water. We perform simulations in the NVT ensemble for fixed flat walls and in the NpT ensemble using a fluctuating wall control of pressure to study how the fluid behavior is affected by fixed and non-fixed walls. Our results indicate that the dynamical and structural properties of the fluid are strongly affected by the wall mobility.

11.
J Chem Phys ; 138(8): 084505, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23464158

ABSTRACT

Using molecular dynamic simulations we study a waterlike model confined between two fixed hydrophobic plates. The system is tested for density, diffusion, and structural anomalous behavior and compared with the bulk results. Within the range of confining distances we had explored and observed that in the pressure-temperature phase diagram the temperature of maximum density (TMD line) and the temperature of maximum and minimum diffusion occur at lower temperatures when compared with the bulk values. For distances between the two layers below a certain threshold, d ≤ dc, only two layers of particles are formed, for d ≥ dc three or more layers are formed. In the case of three layers the central layer stays liquid while the contact layers crystallize. This result is in agreement with simulations for atomistic models.

SELECTION OF CITATIONS
SEARCH DETAIL
...