Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34445122

ABSTRACT

Seven inorganic salts containing N-phenylbiguanide as a prospective organic molecular carrier of nonlinear optical properties were prepared and studied within our research of novel hydrogen-bonded materials for nonlinear optics (NLO). All seven salts, namely N-phenylbiguanidium(1+) nitrate (C2/c), N-phenylbiguanidium(1+) perchlorate (P-1), N-phenylbiguanidium(1+) hydrogen carbonate (P21/c), bis(N-phenylbiguanidium(1+)) sulfate (C2), bis(N-phenylbiguanidium(1+)) hydrogen phosphate sesquihydrate (P-1), bis(N-phenylbiguanidium(1+)) phosphite (P21), and bis(N-phenylbiguanidium(1+)) phosphite dihydrate (P21/n), were characterised by X-ray diffraction (powder and single-crystal X-ray diffraction) and by vibrational spectroscopy (FTIR and Raman). Two salts with non-centrosymmetric crystal structures-bis(N-phenylbiguanidium(1+)) sulfate and bis(N-phenylbiguanidium(1+)) phosphite-were further studied to examine their linear and nonlinear optical properties using experimental and computational methods. As a highly SHG-efficient and phase-matchable material transparent down to 320 nm and thermally stable to 483 K, bis(N-phenylbiguanidium(1+)) sulfate is a promising novel candidate for NLO.


Subject(s)
Salts/chemistry , Crystallization/methods , Crystallography, X-Ray/methods , Optics and Photonics/methods , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , Thermogravimetry/methods , X-Ray Diffraction/methods
2.
Water Sci Technol ; 79(8): 1580-1586, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31169516

ABSTRACT

Over the past few decades, reverse osmosis (RO) has been the dominant technology employed in zero liquid discharge (ZLD) systems for industrial wastewater treatment (WWT). However, RO is limited to a maximum operating salinity of about 75 g kg-1. Electrodialysis (ED) is a potentially attractive option as it can achieve much higher concentrations, thereby reducing the capacity and energy demand of the subsequent evaporation step. Feed-and-bleed experiments were undertaken on a laboratory-scale ED stack using a series of model solutions based on the most common inorganic salts with the aim of determining maximum achievable concentrations. The maximum salt concentration achievable via ED ranged between 104.2 and 267.6 g kg-1, with levels predominantly limited by water transport. In addition, a straightforward review of how ED incorporation can affect ZLD process economics is presented. The operational cost of an ED-based ZLD system for processing RO retentate was almost 20% lower than comparable processes employing high-efficiency RO and disc tubular RO. As the ED-based ZLD system appears economically preferable, and as maximum achievable concentrations greatly exceeded RO operating limits, it would appear to be a promising approach for bridging the gap between RO and evaporation, and may even eliminate the evaporation step altogether.


Subject(s)
Waste Disposal, Fluid/methods , Filtration , Membranes, Artificial , Osmosis , Salinity , Sodium Chloride , Wastewater , Water Purification
3.
Inorg Chem ; 50(8): 3559-66, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21417340

ABSTRACT

Solid solutions InMn(1-x)Ga(x)O(3) (0 ≤ x ≤ 1) have been investigated using magnetic, dielectric, specific heat, differential scanning calorimetry (DSC), and high-temperature powder synchrotron X-ray diffraction (HT-SXRD) measurements. It was found that samples with 0.5 ≤ x ≤ 1 crystallize in space group P6(3)/mmc with a ~ 3.32 Å and c ~ 11.9 Å, and samples with 0.0 ≤ x ≤ 0.4 crystallize in space group P6(3)cm with a ~ 5.8 Å and c ~ 11.6 Å at room temperature. HT-SXRD data revealed the existence of a P6(3)cm-to-P6(3)/mmc phase transition at about 480 K in InMn(0.6)Ga(0.4)O(3) and at 950 K in InMn(0.7)Ga(0.3)O(3). However, no dielectric, phonon, second-harmonic-generation, or DSC anomalies were found to be associated with these phase transitions. The phase transition should be improper ferroelectric from the symmetry point of view, but the above-mentioned experimental facts, together with the absence of ferroelectric hysteresis loops, revealed no evidence for ferroelectricity in the low-temperature P6(3)cm structure. We suggest that InMn(1-x)Ga(x)O(3) corresponds to a nonferroelectric phase of hexagonal RMnO(3) with P6(3)cm symmetry. The antiferromagnetic phase-transition temperature decreases from 118 K for x = 0 to 105 K for x = 0.1 and 73 K for x = 0.2, and no long-range magnetic ordering could be found for x ≥ 0.3. Specific heat anomalies associated with short-range magnetic ordering were observed for 0.0 ≤ x ≤ 0.5. InMn(1-x)Ga(x)O(3) with small Mn contents (0.8 ≤ x ≤ 0.98) has a bright-blue color.

4.
J Org Chem ; 75(24): 8372-5, 2010 Dec 17.
Article in English | MEDLINE | ID: mdl-21082836

ABSTRACT

Nitration of thiacalix[4]arene, immobilized in the 1,3-alternate conformation, leads regioselectively to meta-substituted products. Depending on the reaction conditions, mono- and dinitro-derivatives can be isolated in acceptable yields. This unique substitution pattern is inaccessible in classical calixarene chemistry, and yields inherently chiral compounds, which makes thiacalixarenes very attractive as building blocks or molecular scaffolds.

5.
Acta Crystallogr C ; 56(Pt 6): E263-E264, 2000 Jun 01.
Article in English | MEDLINE | ID: mdl-15263121

ABSTRACT

Crystals of n-butylammonium dihydrogenphosphate, C(4)H(9)NH(3)(+).H(2)PO(4)(-), reveal ferroelasticity at room temperature and a number of phase transitions when heated up to approximately 373 K. Some of these phase transitions show hysteresis effects. All atoms except two H atoms exist in pairs linked by the lost symmetry operations derived from the prototypic space group P2/b2(1)/n2(1)/a. Each of these two different H atoms is involved in an asymmetric hydrogen bond between an oxygen pair. Ferroelastic switching is concomitant with jumps of these hydrogen species from donor to acceptor O atoms. The studied structure belongs to the structural family of n-hexyl- to n-decylammonium dihydrogenphosphates and differs by localization of alternating layers from n-propyl- and n-pentylammonium dihydrogenphosphates. The studied crystal was slightly twinned; the minor domain constituted approximately 2%.

SELECTION OF CITATIONS
SEARCH DETAIL
...