Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(17)2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37687557

ABSTRACT

Given their considerable specific surface area and amorphous characteristics, nanoparticles exhibit excellent pozzolanic activity, and when undergoing a reaction with calcium hydroxide, this leads to the generation of a denser matrix by promoting the formation of a greater amount of C-S-H gel, thereby enhancing the strength and durability of the concrete and fortifying the overall structure. Indeed, the present study investigates a comparative study of the buckling and free vibration analyses of concrete beams reinforced with various types of nanoparticles. For its simplicity and accuracy, a higher-order shear deformation theory will be used to analytically model the reinforced concrete beam. Furthermore, the powerful Eshelby's model is used to derive the equivalent nanocomposite properties. The soil medium is simulated with Pasternak elastic foundation, including a shear layer, and Winkler's spring, interlinked with a Kerr foundation. The motion equations are derived using Hamilton's principle. Moreover, based on Navier's analytical methods, the closed-form solutions of simply supported beams have been obtained. Different parameters, such as type and volume percent of nanoparticles, geometrical parameters, choice of theory and soil medium, on the buckling and dynamic behavior of the beam, are exercised and shown. The major findings of this work indicate that the use of nanoparticles in concretes increases better mechanical resistance and amplifies the natural frequencies. In addition, the elastic foundation has a significant impact on the buckling and vibration performances of concrete beams.

2.
Materials (Basel) ; 16(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37512314

ABSTRACT

Acknowledging the growing impact of nanotechnologies across various fields, this engaging research paper focuses on harnessing the potential of nano-sized materials as enhancers for concretes. The paper emphasizes the strategic integration of these entities to comprehensively improve the strength and performance of concrete matrixes. To achieve this, an analytical study is conducted to investigate the static behavior of concrete beams infused with different types of clay nano-platelets (NC's), employing quasi-3D beam theory. The study leverages the effective Eshelby's homogenization model to determine the equivalent elastic characteristics of the nanocomposite. The intricate interactions of the soil medium are captured through the use of a Winkler-Pasternak elastic foundation. By employing virtual work principles, the study derives equations of motion and proposes analytical solutions based on Navier's theory to unravel the equilibrium equations of simply supported concrete beams. The results shed light on influential factors, such as the clay nano-platelet type, volume percentage, geometric parameters, and soil medium, providing insights into the static behavior of the beams. Moreover, this research presents previously unreported referential results, highlighting the potential of clay nano-platelets as reinforcements for enhancing structural mechanical resistance.

3.
Materials (Basel) ; 16(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37109878

ABSTRACT

Nanoparticles, by virtue of their amorphous nature and high specific surface area, exhibit ideal pozzolanic activity which leads to the formation of additional C-S-H gel by reacting with calcium hydroxide, resulting in a denser matrix. The proportions of ferric oxide (Fe2O3), silicon dioxide (SiO2), and aluminum oxide (Al2O3) in the clay, which interact chemically with the calcium oxide (CaO) during the clinkering reactions, influence the final properties of the cement and, therefore, of the concrete. Through the phases of this article, a refined trigonometric shear deformation theory (RTSDT), taking into account transverse shear deformation effects, is presented for the thermoelastic bending analysis of concrete slabs reinforced with ferric oxide (Fe2O3) nanoparticles. Thermoelastic properties are generated using Eshelby's model in order to determine the equivalent Young's modulus and thermal expansion of the nano-reinforced concrete slab. For an extended use of this study, the concrete plate is subjected to various mechanical and thermal loads. The governing equations of equilibrium are obtained using the principle of virtual work and solved using Navier's technique for simply supported plates. Numerical results are presented considering the effect of different variations such as volume percent of Fe2O3 nanoparticles, mechanical loads, thermal loads, and geometrical parameters on the thermoelastic bending of the plate. According to the results, the transverse displacement of concrete slabs subjected to mechanical loading and containing 30% nano-Fe2O3 was almost 45% lower than that of a slab without reinforcement, while the transverse displacement under thermal loadings increased by 10%.

4.
J Mol Graph Model ; 118: 108322, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36117040

ABSTRACT

In order to investigate the elastic constants of pristine and imperfect carbon nanocones, the present work aims to develop an easy and efficient nonlinear atomic finite element model (AFEM) capable of capturing the torsional effect in addition to the bond stretching and bond angle bending interactions. These effects are considered the predominant atomistic interactions induced in carbon nanocones (CNCs). Hence, a new basic AFEM element containing nineteen atoms is developed and examined by studying the effect of the geometric parameters of CNCs on their Young's modulus and comparing the obtained results with the available literature. It is concluded that the proposed AFEM slightly overestimates the Young's modulus compared to the reported methods, while it simulates almost the same behavior of the curves as the literature results. Furthermore, the present AFEM is carried out in a random program in order to investigate the influence of different percentages of imperfections on the Young's modulus of CNCs. The obtained results show that the increment of the imperfection percentage significantly reduces the Young's modulus, and this reduction is almost linear and insensitive to the apex angle variation. This study demonstrates that the proposed AFEM can be implemented easily compared to the reported molecular dynamics (MD) methods, as well as that it is able to investigate the mechanical properties of all types of carbon nanocones with a good accuracy in a standard computational time.

SELECTION OF CITATIONS
SEARCH DETAIL
...