Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Int J Phytoremediation ; 26(6): 903-912, 2024.
Article in English | MEDLINE | ID: mdl-38018097

ABSTRACT

Electronic waste (e-waste) illegally disposal in Thailand is becoming more widespread. A sustainable metal recovery technology is needed. A phytotechnology called "phytomining" of metals such as nickel (Ni) is a promising technology providing a sustainable solution to the growing e-waste problems. This study investigated the ability of Acacia species in association with e-waste site isolated, plant growth-promoting rhizobacteria (PGPR), Bacillus amyloliquefaciens. Acacia mangium accumulated higher Ni in their tissues when Ni concentrations in soil were lower than 200 mg kg-1. The inoculation of PGPR B. amyloliquefaciens enhanced Ni uptake and accumulation in the leaves, stem, and root. The results showed that the highest Ni concentration was found in the root ash (825.50 mg kg-1) when inoculated plants were grown in soil containing 600 mg kg-1 Ni. Hence, the Ni recovery process and mass balance were performed on root ashes. The highest Ni recovery was 91.3% from the acid (H2SO4) leachate of the ash of inoculated plant treated with 600 mg kg-1 Ni. This demonstrates the feasibility of PGPR-assisted phytomining from Ni-contaminated soil. Phytomining of Ni from any e-waste contaminated sites using Acacia mangium in combination with B. amyloliquefaciens can promote plant growth and improve the uptake of Ni.


Phytomining from electronic waste is an appealing technology that can provide a long-term waste management strategy while valuable trace metals can be recovered. In this study, we evaluated the nickel phytomining ability of Acacia mangium in association with PGPR Bacillus amyloliquefaciens. The results from this study showed that Ni recovery from phytomass using A. mangium with B. amyloliquefaciens can be further improved leading to a sustainable waste management strategy.


Subject(s)
Acacia , Bacillus amyloliquefaciens , Electronic Waste , Soil Pollutants , Nickel , Biodegradation, Environmental , Acacia/microbiology , Soil
2.
Environ Toxicol ; 38(4): 867-882, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36602419

ABSTRACT

Glyphosate is one of the most widely used herbicides in the world. However, because of its overuse and resistance to degradation, high levels of glyphosate residues in the environment are reported. Therefore, this study aimed to investigate the effects of glyphosate on proteomic aspects of Tetrahymena thermophila and their uses as bioindicators of freshwater ecosystem. First, an acute toxicity test was performed to determine the median inhibition concentration (IC50 ). The toxicity test results showed that glyphosate inhibited the growth (proliferation) of T. thermophila. The 96 h-IC50 value of glyphosate was 171 mg L-1 . No visible changes in aggregation behavior and cell morphology were observed under glyphosate exposure. In addition, the effects of low and high dose glyphosate concentrations (77.5 mg L-1 , 171 mg L-1 ) on the proteomic changes of T. thermophila was investigated using a label-free shotgun proteomic approach. A total of 3191 proteins were identified, 2791 proteins were expressed in the control, 2651 proteins were expressed in 77.5 mg L-1 glyphosates, and 3012 proteins were expressed in 171 mg L-1 glyphosates. Under glyphosate exposure at both low and high dose glyphosate, 400 unique proteins were upregulated. The majority of these proteins was classified as proteins associated with oxidative stress response and intracellular transport indicating the shifts in the internal metabolism. Proteomics revealed that the glyphosate metabolism by T. thermophila is a multi-step process involving several enzymes, which can be divided into four phases, including modification (phase I), conjugation (phase II), transport (phase III), and degradation (phase IV). The accumulation of various biochemical reactions contributes to overall glyphosate resistance. With the proteomics approach, we have found that T. thermophila was equipped with glyphosate detoxification and degradation mechanisms.


Subject(s)
Tetrahymena thermophila , Tetrahymena thermophila/metabolism , Proteomics , Ecosystem , Oxidative Stress , Glyphosate
3.
Environ Technol ; : 1-15, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36527266

ABSTRACT

Petroleum hydrocarbon contamination is a serious concern across the globe. Here, the capability of native bacterial consortium enriched from sediment samples of Map Ta Phut Industrial Estate (MTPIE), Rayong, Thailand was described. The distribution of PAHs was assessed from the sediment samples collected from MTPIE by GC-FID and the toxic unit (TU) was calculated to assess the potential ecological risk to the surrounding biota. This study investigated the degradation potential and determined the PAH-degrading bacterial cultures by enriching collected sediments in PAHs mixtures (naphthalene, phenanthrene, and pyrene). The TPH degradation capacity of each bacterial consortium was validated in a soil microcosm using aged crude oil-contaminated soil. The MTPIE sediments were highly contaminated with PAHs (843.99-3904.39 ng g-1) and posed extremely high ecological risks to benthic biota (TU > 1). The consortium S5-P most significantly removed naphthalene (90.03%) and phenanthrene (88.14%) while the highest removal of pyrene was achieved by the S3-P consortium. Other consortia only partially degraded the PAHs. The dominant microbes in the consortia were determined using PCR-DGGE, it was found that the PAH degrading consortia were known PAH degraders such as Annwoodia, Bacillus, Brevibacillus, Lysinibacillus, Paracoccus, Rhodococcus, Sphingopyxis, Sulfurovum, and Sulfurimonas species and unknown PAH degraders such as Lithuaxuella species. The consortium S5-P showed the highest degradation capacity, removing 74.99% of TPHs in the soil microcosm. Furthermore, the inoculation of PAH-biodegrading bacterial consortia significantly promoted the catechol-2,3-dioxygenase (C23O) and dehydrogenase (DHA) activities which directly correlated with the degradation efficiency of petroleum hydrocarbons (p < 0.05).

4.
Int J Phytoremediation ; 24(14): 1505-1517, 2022.
Article in English | MEDLINE | ID: mdl-35266855

ABSTRACT

To understand the plant (Vigna unguiculata) and plant-growth promoting bacteria (PGPB) (Microcococcus luteus WN01) interactions in crude oil contaminated soil, experiments were conducted based on the newly designed rhizobox system. The rhizobox was divided into three main compartments namely the rhizosphere zone, the mid-zone, and the bulk soil zone, in accordance with the distance from the plant. Plants were grown in these three-chambered pots for 30 days under natural conditions. The plant root exudates were determined by analyzing for carbohydrates, amino acids, and phenolic compounds. The degradation of alkane, polycyclic aromatic hydrocarbons (PAHs), and total petroleum hydrocarbons (TPHs) were quantified by GC-FID. Soil catalase, dehydrogenase, and invertase activities were determined. The microbial community structure was assessed using denaturing gradient gel electrophoresis (DGGE). Results showed that the inoculation of M. luteus WN01 significantly enhanced cowpea root biomass and exudates, especially the phenolic compounds. Bioaugmented phytoremediation by cowpea and M. luteus promoted rhizodegradation of TPH. Cowpea stimulated microbial growth, soil dehydrogenase, and invertase activities and enhanced bacterial community diversity in oil contaminated soil. The rhizosphere zone of cowpea inoculated with M. luteus showed the highest removal efficiency, microbial activities, microbial population, and bacterial community diversity indicating the strong synergic interactions between M. luteus and cowpea.


This is the first study to characterize the rhizosphere effect of cowpea on microbial activities, population, and community structure in crude oil contaminated soil in the presence and absence of PGPB, M. luteus WN01. The rhizosphere of cowpea was found to be a degradation hotspot where microbial abundance and metabolic activities were most active. Cowpea-M. luteus association can be a good candidate that can be implemented in real field sites.


Subject(s)
Microbiota , Petroleum , Soil Pollutants , Biodegradation, Environmental , Petroleum/metabolism , Rhizosphere , Soil/chemistry , beta-Fructofuranosidase/metabolism , Soil Pollutants/metabolism , Soil Microbiology , Bacteria/metabolism , Oxidoreductases/metabolism
5.
Int J Phytoremediation ; 24(1): 101-109, 2022.
Article in English | MEDLINE | ID: mdl-34378998

ABSTRACT

During rhizoremediation process, plant roots secrete the specific exudates which enhance or stimulate growth and activity of microbial community in the rhizosphere resulting in effective degradation of pollutants. The present study characterized cowpea (CP) and mung bean (MB) root exudates and examined their influences on the degradation of total petroleum hydrocarbons (TPHs) and polycyclic aromatic hydrocarbons (PAHs) by the two oil degraders Micrococcus luteus WN01 and Bacillus cereus W2301. The effects of root exudates on soil microbial population dynamic and their enzymes dehydrogenase (DHA), and catechol 2,3 dioxygenase (C23O) activities were assessed. Both root exudates enhanced the degradation by both oil degraders. Cowpea root exudates maximized the removal of TPHs and PAHs by M. luteus WN01. Both bacterial population and DHA increased significantly in the presence of both root exudates. However, the C23O activities were significantly higher in WN01 treated. No significant influence of root exudates was observed on the C23O activities of W2301 treated. By using gas chromatography -mass spectroscopy, the dominant compounds found in cowpea and mung bean root exudates were 4-methoxy-cinnamic acid and terephthalic acid. Found in lower amount were propionic, malonic acid, and citric acid which were associated with enhanced PAHs desorption from soil and subsequent degradation. Novelty statement This is the first study to characterize the low molecular weight organic acids from root exudates of cowpea and mung bean and their influences on hydrocarbon desorption and hence enhancing the biodegradation process. The findings of the present study will greatly contribute to a better understanding of plant-microbe interaction in total petroleum hydrocarbons contaminated soil.


Subject(s)
Petroleum , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biodegradation, Environmental , Exudates and Transudates/chemistry , Kinetics , Polycyclic Aromatic Hydrocarbons/analysis , Soil , Soil Microbiology , Soil Pollutants/analysis
6.
Article in English | MEDLINE | ID: mdl-34370617

ABSTRACT

The objective of this study was to determine the adsorbent potential of rice husk and its modified form for phosphate and nitrate removal from synthetic and swine-farm wastewater. The mechanism of adsorption as well as the potential of phosphate-/nitrate- adsorbed rice husk as nutrient rich residue was also investigated. Two-step modification of RH (using base-washing (BW) and chemical modification (CM) was conducted to compare the phosphate and nitrate removal. The effects of several factors (pH, sorbent dosage, contact time, initial concentration, and coexistence of both ions) were investigated to gain insight into the adsorption rate, behavior, and mechanism of the modified RH regarding phosphate and nitrate removal. The results of Fourier-transform infrared spectroscopy showed that the modification was successful by crosslinking with the amine group of the chemical agent. Fitting the adsorption kinetic data of phosphate showed physical adsorption, intraparticle diffusion, and chemisorption, whereas for nitrate, the data indicated mainly chemisorption. Fitting the adsorption isotherm data of phosphate and nitrate together showed adsorption on a monolayer coating of anions on the homogeneous sorbent's surface. The maximum phosphate and nitrate adsorption capacities were 6.94 and 2.46 mg/g, respectively, for a single adsorbate and 11.14 and 1.76 mg/g, respectively, for the binary solution. In real swine wastewater, removal efficiencies of phosphate, nitrite, nitrate, sulfate, and ammonia were 83.8%, 65.0%, >45.0%, 36.6%, and 2.6%, respectively, indicating that the modified RH would be effective for phosphate and nitrate removal from real wastewater. Finally, nutrient analysis of the phosphate- and nitrate-sorbed RH showed increases in nitrogen and phosphorus, which would be beneficial for further use of the RH as nutrient or fertilizer after adsorption.


Subject(s)
Oryza , Water Pollutants, Chemical , Adsorption , Animals , Hydrogen-Ion Concentration , Kinetics , Nitrates , Nutrients , Phosphates , Swine , Wastewater
7.
Int J Phytoremediation ; 23(10): 1061-1066, 2021.
Article in English | MEDLINE | ID: mdl-33501846

ABSTRACT

To assess the cadmium (Cd) phytoremediation of three native plant species from Padeang zinc (Zn) mine area (Chromolaena odorata, Impatiens patula, and Gynura pseudochina), a hydroponic experiment was performed in nutrient solutions containing various concentrations of Cd (0, 5, 10, 20, and 50 mg L-1) for 15 days. In the hydroponic experiment, C. odorata showed significantly higher total Cd content than those grown in 50 mg L-1 Cd solutions. Only C. odorata and I. patula were chosen for the pot experiment. The plants were grown in spiked Cd-contaminated soils for 90 days, with different concentrations of Cd (0, 20, 40, 60, and 80 mg kg-1). The results from the pot experiment revealed that both species accumulated more Cd in their root parts, with translocation factor values < 1. C. odorata exhibited the highest biomass production, relative growth rate, and Cd uptake or removal. The findings of the study clearly demonstrate the best uptake of C. odorata in Cd phytoremediation. Novelty statementEven though Chromolaena odorata, Impatiens patula, and Gynura pseudochina have been reported as a Cd accumulator but the assessment of these species by nutrient medium and the soil was not undertaken so far. The discovery of new Cd-accumulator plants has been hindered by the lack of efficient assessing. To assess the suitability of specific species of tropical plants that are able to uptake high amounts of Cd without risk of toxicity under conditions similar to the actual field study, is a novelty.


Subject(s)
Asteraceae , Chromolaena , Impatiens , Soil Pollutants , Biodegradation, Environmental , Cadmium , Soil
8.
Int J Phytoremediation ; 23(2): 181-189, 2021.
Article in English | MEDLINE | ID: mdl-32808536

ABSTRACT

Soil adulteration by organic and inorganic contaminants chiefly in industrial and agricultural area is one of the major problems faced by the world today. Phytoremediation using aromatic plant such as Ocimum is a sound, economically reasonable and an eco-friendly approach. Besides, microbial assisted phytoremediation can bring about plant-promoted microbial degradation, plant uptake and phytodegradation of soil contaminants. In this study, the ability of Ocimum gratissimum in association with Pseudomonas putida MU02 to remediate zinc and crude oil contaminated soil (2,000 mg/kg, 1% w w-1 crude oil) was investigated in a 60-day pot experiment. Four different treatments and a control (clean soil + plant) were employed for the study: co-contaminated soil only; co-contaminated soil with O. gratissimum; co-contaminated with P. putida inoculum; co-contaminated soil with O. gratissimum and P. putida. Comparatively, the highest TPH deduction efficiency (75.87%) was shown by the treatment comprising of O. gratissimum and P. putida while highest metal uptake was shown by the treatment with plant only. Better TPH removal associated with higher number of bacteria in the vegetated and inoculated pots could be attributed to the rhizopheric effect of the plants. Altogether, the association of O. gratissimum with P. putida can be a potential candidate for the remediation of co-contaminated soil.


Subject(s)
Ocimum , Petroleum , Pseudomonas putida , Soil Pollutants , Biodegradation, Environmental , Soil , Soil Pollutants/analysis , Zinc
9.
Environ Microbiol ; 22(6): 2403-2418, 2020 06.
Article in English | MEDLINE | ID: mdl-32291875

ABSTRACT

In Saccharomyces cerevisiae, vacuolar H+ -ATPase (V-ATPase) involved in the regulation of intracellular pH homeostasis has been shown to be important for tolerances to cadmium, cobalt and nickel. However, the molecular mechanism underlying the protective role of V-ATPase against these metals remains unclear. In this study, we show that cadmium, cobalt and nickel disturbed intracellular pH balance by triggering cytosolic acidification and vacuolar alkalinization, likely via their membrane permeabilizing effects. Since V-ATPase plays a crucial role in pumping excessive cytosolic protons into the vacuole, the metal-sensitive phenotypes of the Δvma2 and Δvma3 mutants lacking V-ATPase activity were supposed to result from highly acidified cytosol. However, we found that the metal-sensitive phenotypes of these mutants were caused by increased production of reactive oxygen species, likely as a result of decreased expression and activities of manganese superoxide dismutase and catalase. In addition, the loss of V-ATPase function led to aberrant vacuolar morphology and defective endocytic trafficking. Furthermore, the sensitivities of the Δvma mutants to other chemical compounds (i.e. acetic acid, H2 O2 , menadione, tunicamycin and cycloheximide) were a consequence of increased endogenous oxidative stress. These findings, therefore, suggest the important role of V-ATPase in preventing endogenous oxidative stress induced by metals and other chemical compounds.


Subject(s)
Cadmium/toxicity , Cobalt/toxicity , Nickel/toxicity , Oxidative Stress/drug effects , Saccharomyces cerevisiae Proteins/genetics , Vacuolar Proton-Translocating ATPases/genetics , Catalase/metabolism , Mutation , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Superoxide Dismutase/metabolism , Vacuolar Proton-Translocating ATPases/metabolism
10.
Int J Phytoremediation ; 22(3): 322-333, 2020.
Article in English | MEDLINE | ID: mdl-31505941

ABSTRACT

Bioremediation of lead-petroleum co-contaminated soil under salt-stressed condition has been investigated. In this study, the co-contaminated soil (780 mg kg-1 Pb and 27,000 mg kg-1 TPHs) under the high salinity (EC 7.79 ds m-1) was used as a model soil to be remediated by Chromolaena odorata inoculated with Micrococcus luteus. The results showed that salt stress caused a marked reduction in dry biomass and stem height, and high accumulation of proline. The presence of salt did not affect the total amount of chlorophyll in plant tissues. No toxicity symptoms were evident from plant morphology after three months of exposure. Drastic differences in the accumulation patterns of Pb in C. odorata grown on saline and non-saline soils were observed and indicated that salinity negatively affected Pb uptake and accumulation. A high rate of degradation of TPHs was observed in non-saline soils with or without bacterial inoculation. Salinity stress showed no significant different in the proportion of TPH degradation with added or non-added M. luteus. The tolerance of C. odorata and M. luteus to moderate concentrations of Pb and fuel oil made them very good candidates for the use in bacteria-assisted phytoremediation of lead-fuel oil co-contaminated soils under the mild saline soils.


Subject(s)
Chromolaena , Fuel Oils , Soil Pollutants , Bacteria , Biodegradation, Environmental , Lead , Micrococcus luteus , Salt Stress , Soil
11.
Environ Technol ; 41(27): 3598-3606, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31070994

ABSTRACT

Lead (Pb) contamination is one of the major environmental problems on a global scale. Bacterial endophytes have been accepted as a promising technique to assist phytoremediation. In this study, three Pb-tolerant endophytic bacteria were isolated from the roots of Pityrogramma calomelanos. Based on partial 16S rRNA gene sequencing analysis, all isolates were similar to Pseudomonas and tolerated Pb concentration up to 1850mg/L, producing siderophores and solubilized phosphate. Among them, Pc isolate closely related to Pseudomonas psychrophila showed the highest water-soluble Pb in solution (Pb solubilization) and in contaminated soil. This isolate was chosen to study the effects on Pb accumulation in the roots of Acacia mangium and Eucalyptus camaldulensis by a hydroponic experiment. The results showed that, in the Hoagland nutrient solution with no Pb spiking, the roots showed no significant difference (p > 0.05), and the concentration of Pb ranged from 10 to 89 mg/kg. In the nutrient solution in the presence of 30 mg/L Pb, there were no significant changes in Pb contents in roots. However, A. mangium showed an increase in Pb concentration in the roots (6829 ± 697 mg/kg), compared to non-inoculation (6242 ± 272 mg/kg). E. camaldulensis inoculation showed a decrease in Pb content (3763 ± 592 mg/kg), compared to non-inoculation (4233 ± 264 mg/kg). These results suggest that the Pc isolate closely related to P. psychrophila was effective in promoting the phytoremediation potential of A. mangium, but it was not useful for E. camaldulensis.


Subject(s)
Soil Pollutants , Trees , Bacteria/genetics , Biodegradation, Environmental , Lead , Plant Roots/chemistry , Pseudomonas , RNA, Ribosomal, 16S/genetics , Soil Pollutants/analysis
12.
Bull Environ Contam Toxicol ; 99(4): 518-523, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28823039

ABSTRACT

Using trees as phytoremediators has become a powerful tool to remediate lead from contaminated environments. This study aims to identify potential candidates among fast-growing trees by comparing their ability to tolerate and accumulate Pb. Cuttings from Acacia mangium, Azadirachta indica, Eucalyptus camaldulensis, and Senna siamea were cultured in 25% modified Hoagland's solutions supplemented with 10, 30, and 50 mg/L Pb for 15 days. Lead concentrations were determined by a flame atomic absorption spectrophotometer. All species showed high Pb tolerance (over 78%) and low translocation factor (<1) in all treatments. The highest Pb content in roots (>40000 mg/kg) was recorded in A. mangium and E. camaldulensis grown in 50 mg/L Pb solution. Based on high biomass, tolerance index, and Pb content in plants, A. mangium and E. camaldulensis are good candidates for phytoremediation.


Subject(s)
Acacia/growth & development , Eucalyptus/growth & development , Lead/analysis , Soil Pollutants/analysis , Acacia/chemistry , Acacia/drug effects , Biodegradation, Environmental , Biomass , Eucalyptus/chemistry , Eucalyptus/drug effects , Hydroponics , Models, Theoretical , Plant Roots/chemistry , Plant Roots/drug effects , Plant Roots/growth & development , Species Specificity
13.
Dev Comp Immunol ; 76: 370-379, 2017 11.
Article in English | MEDLINE | ID: mdl-28709908

ABSTRACT

The viral accommodation hypothesis proposes that endogenous viral elements (EVE) from both RNA and DNA viruses are being continually integrated into the shrimp genome by natural host processes and that they can result in tolerance to viral infection by fortuitous production of antisense, immunospecific RNA (imRNA). Thus, we hypothesized that previously reported microarray results for the presence of white spot syndrome virus (WSSV) open reading frames (ORFs) formerly called 151, 366 and 427 in a domesticated giant tiger shrimp (Penaeus monodon) breeding stock might have represented expression from EVE, since the stock had shown uninterrupted freedom from white spot disease (WSD) for many generations. To test this hypothesis, 128 specimens from a current stock generation were confirmed for freedom from WSSV infection using two nested PCR detection methods. Subsequent nested-PCR testing revealed 33/128 specimens (26%) positive for at least one of the ORF at very high sequence identity (95-99%) to extant WSSV. Positive results for ORF 366 (now known to be a fragment of the WSSV capsid protein gene) dominated (28/33 = 84.8%), so 9 arbitrarily selected 366-positive specimens were tested by strand-specific, nested RT-PCR using DNase-treated RNA templates. This revealed variable RNA expression in individual shrimp including no RNA transcripts (n = 1), sense transcripts only (n = 1), antisense transcripts only (n = 2) or transcripts of both sense (n = 5). The latter 7 expression products indicated specimens producing putative imRNA. The variable types and numbers of the EVE and the variable RNA expression (including potential imRNA) support predictions of the viral accommodation hypothesis that EVE are randomly produced and expressed. Positive nested PCR test results for EVE of ORF 366 using DNA templates derived from shrimp sperm (germ cells), indicated that they were heritable.


Subject(s)
Artemia/genetics , DNA, Viral/genetics , Germ Cells/physiology , Open Reading Frames/genetics , White spot syndrome virus 1/genetics , Animals , Artemia/virology , Evolution, Molecular , Immune Tolerance , Polymerase Chain Reaction , RNA Precursors/genetics , Transcriptome , Virus Integration
14.
Article in English | MEDLINE | ID: mdl-28276887

ABSTRACT

Biosorption of Pb and Cd from aqueous solution by biomass of Chara aculeolata was studied in a continuous packed bed column. C. aculeolata in the fixed bed column is capable of decreasing Pb and Cd concentrations from 10 mg/L to a value below the detection limit of 0.02 mg/L. Selective uptake of Pb and Cd in a binary solution resulted in Pb having much higher relative affinity than Cd. The experiments were conducted to study the effects of column design parameters, bed depth, and flow rate on the metal biosorption. Pb uptake capacity of C. aculeolata increased with increased bed depth and decreased flow rate, while Cd uptake capacity increased with increased bed depth but remained constant at any flow rate. The Thomas model was found in a suitable fitness with the experiment data for Pb and Cd (R2 > 0.90). The efficiency of biosorbent regeneration achieved by 0.1 M HCl was very high, that was, 98% for Pb and 100% for Cd in the third reused cycle. It can be concluded that C. aculeolata is a good biosorbent for treating wastewater having low concentrations of Pb and Cd contamination.


Subject(s)
Cadmium/isolation & purification , Chara/chemistry , Lead/isolation & purification , Models, Theoretical , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Biomass , Ions
15.
Int J Phytoremediation ; 18(10): 994-1001, 2016 Oct 02.
Article in English | MEDLINE | ID: mdl-27159380

ABSTRACT

Phytoremediation is widely promoted as a cost-effective technology for treating heavy metal and total petroleum hydrocarbon (TPH) co-contaminated soil. This study investigated the concurrent removal of TPHs and Pb in co-contaminated soil (27,000 mg kg(-1) TPHs, 780 mg kg(-1) Pb) by growing Siam weed (Chromolaena odorata) in a pot experiment for 90 days. There were four treatments: co-contaminated soil; co-contaminated soil with C. odorata only; co-contaminated soil with C. odorata and Micrococcus luteus inoculum; and co-contaminated soil with M. luteus only. C. odorata survived and grew well in the co-contaminated soil. C. odorata with M. luteus showed the highest Pb accumulation (513.7 mg kg(-1)) and uptake (7.7 mg plant(-1)), and the highest reduction percentage of TPHs (52.2%). The higher TPH degradation in vegetated soils indicated the interaction between the rhizosphere microorganisms and plants. The results suggested that C. odorata together with M. luteus and other rhizosphere microorganisms is a promising candidate for the removal of Pb and TPHs in co-contaminated soils.


Subject(s)
Chromolaena/metabolism , Chromolaena/microbiology , Fuel Oils , Lead/metabolism , Micrococcus luteus/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Biodegradation, Environmental
16.
Ecotoxicol Environ Saf ; 122: 322-30, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26300116

ABSTRACT

The three bacteria, Tsukamurella paurometabola A155, Pseudomonas aeruginosa B237, and Cupriavidus taiwanensis E324, were isolated from soils collected from a zinc mine in Tak Province, Thailand. Among these bacteria, P. aeruginosa B237 and C. taiwanensis E324 were tolerant of both cadmium and zinc, while T. paurometabola A155 was highly tolerant of zinc only. Bioaccumulation experiment revealed that Cd(2+) and Zn(2+) were mainly adsorbed on the cell walls of these bacteria rather than accumulated inside the cells. During Cd(2+) and Zn(2+) biosorption, P. aeruginosa B237 and T. paurometabola A155 showed the highest removal efficiencies for Cd(2+) and Zn(2+), respectively. The maximum biosorption capacities of P. aeruginosa B237 and T. paurometabola A155 biomasses for Cd(2+) and Zn(2+) biosorptions were 16.89 and 16.75 mg g(-1), respectively, under optimal conditions. The experimental data of Cd(2+) and Zn(2+) biosorptions fitted well with Langmuir isotherm model, suggesting that Cd(2+) and Zn(2+) adsorptions occurred in a monolayer pattern on a homogeneous surface. Furthermore, the pseudo-second order and pseudo-first order kinetic models best described the biosorption kinetics of Cd(2+) and Zn(2+) adsorptions, respectively, suggesting that the Cd(2+) and Zn(2+) adsorptions took place mainly by chemisorption (Cd(2+)) and physisorption (Zn(2+)).


Subject(s)
Cadmium/isolation & purification , Mining , Soil Microbiology , Soil Pollutants/isolation & purification , Zinc/isolation & purification , Adsorption , Biomass , Cadmium/chemistry , Cell Wall/chemistry , Corynebacterium/growth & development , Cupriavidus/growth & development , Kinetics , Pseudomonas aeruginosa/growth & development , Soil Pollutants/chemistry , Thailand , Zinc/chemistry
17.
Ecotoxicol Environ Saf ; 122: 290-5, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26295753

ABSTRACT

The acute toxicity test of Cu including range-finding and definitive test, was performed on golden apple snails, Pomacea canaliculata. The median lethal concentrations (LC50) of Cu at exposure times of 24, 48, 72 and 96 h were 330, 223, 177 and 146 µg/L, respectively. P. canaliculata were exposed to Cu at 146 µg/L for 96 h to study bioaccumulation and histopathological alterations in various organs. Snails accumulated elevated levels of Cu in gill, and lesser amounts in the digestive tract, muscle, and digestive gland. Histopathological investigation revealed several alterations in the epithelia of gill, digestive tract (esophagus, intestine, rectum), and digestive gland. The most striking changes were observed in the epithelium of the gill in which there was loss of cilia, an increase in number of mucus cells, and degeneration of columnar cells. Similar changes occurred in digestive tract epithelium. The digestive gland showed moderate alterations, vacuolization and degeneration of cells and an increase in the number of basophilic cells. We concluded that, P. canaliculata has a great potential as a bioindicator for Cu, and a biomarker for monitoring Cu contamination in aquatic environment.


Subject(s)
Copper Sulfate/toxicity , Gastrointestinal Tract/drug effects , Gills/drug effects , Muscles/drug effects , Snails/drug effects , Water Pollutants, Chemical/toxicity , Animals , Copper Sulfate/pharmacokinetics , Dose-Response Relationship, Drug , Environmental Monitoring , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/pathology , Gills/metabolism , Gills/pathology , Lethal Dose 50 , Muscles/metabolism , Muscles/pathology , Snails/metabolism , Toxicity Tests, Acute , Water Pollutants, Chemical/pharmacokinetics
18.
Int J Phytoremediation ; 17(11): 1053-9, 2015.
Article in English | MEDLINE | ID: mdl-25985054

ABSTRACT

The influence of three plant growth regulators, indolebutyric acid (IBA), thidiazuron (TDZ) and gibberellic acid (GA3), either individually or in pair-wise combinations, on the ability of waxy corn plant to remove hexachlorocyclohexane (HCH) from contaminated soil was studied. Waxy corn seeds were immersed for 3 h in solutions of 1.0 mg/l IBA, 0.01 mg/l TDZ, 0.1 mg/l GA3, or a mixture of two of the growth regulators, and then inoculated in soil contaminated with 46.8 mg/kg HCH for 30 days. Pretreatment of corn seeds with the plant growth regulators did not enhance corn growth when compared with those immersed in distilled water (control), but the pretreatment enhanced HCH removal significantly. On day 30, HCH concentration in the bulk soil planted with corn seeds pretreated with GA3 or TDZ+GA3 decreased by 97.4% and 98.4%, respectively. In comparison, HCH removal in soil planted with non-pretreated control waxy corn seeds was only 35.7%. The effect of several growth regulator application methods was tested with 0.01 mg/l TDZ. The results showed that none of the methods, which ranged from seed immersion, watering in soil, or spraying on shoots, affected HCH removal from soil. However, the method of applying the growth regulators may affect corn growth. Watering the corn plant with TDZ in soil led to higher root fresh weight (2.2 g) and higher root dried weight (0.57 g) than the other treatments (0.2-1.7 g root fresh weight and 0.02-0.43 g root dried weight) on day 30. Varying the concentrations of GA3 did not affect the enhancement of corn growth and HCH removal on day 30. The results showed that plant growth regulators may have potential for use to enhance HCH phytoremediation.


Subject(s)
Hexachlorocyclohexane/metabolism , Insecticides/metabolism , Plant Growth Regulators/pharmacology , Soil Pollutants/metabolism , Zea mays/drug effects , Zea mays/metabolism , Biodegradation, Environmental , Gibberellins/pharmacology , Indoles/pharmacology , Phenylurea Compounds/pharmacology , Thiadiazoles/pharmacology , Zea mays/growth & development
19.
Int J Phytoremediation ; 17(1-6): 165-74, 2015.
Article in English | MEDLINE | ID: mdl-25254923

ABSTRACT

Pot and field experiments were conducted to investigate the effects of soil amendments (cow manure, rice straw, zeolite, dicalcium phosphate) on the growth and metal uptake (Cd, Zn) of maize (Zea mays) grown in Cd/Zn contaminated soil. The addition of cow manure and rice straw significantly increased the dry biomass, shoot and root length, and grain yield of maize when compared with the control. In pot study, cow manure, rice straw, and dicalcium phosphate all proved effective in reducing Cd and Zn concentrations in shoots and roots. Cd and Zn concentrations in the grains of maize grown in field study plots with cow manure and dicalcium phosphate amendments to highly contaminated soil (Cd 36.5 mg kg(-1) and Zn 1520.8 mg kg(-1)) conformed to acceptable standards for animal feed. Additionally both cow manure and dicalcium phosphate amendments resulted in the significant decrease of Cd and Zn concentrations in shoots of maize.


Subject(s)
Cadmium/metabolism , Environmental Restoration and Remediation/methods , Soil Pollutants/metabolism , Zea mays/growth & development , Zea mays/metabolism , Zinc/metabolism , Animals , Biodegradation, Environmental , Cadmium/analysis , Environmental Restoration and Remediation/instrumentation , Manure/analysis , Soil/chemistry , Soil Pollutants/analysis , Zea mays/chemistry , Zinc/analysis
20.
J Environ Biol ; 35(6): 1021-30, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25522501

ABSTRACT

The effect of two plant growth regulators, alpha-naphthalene acetic acid (NAA) and thidiazuron (TDZ) on the growth of sweet corn (Zea mays), cowpea (Vigna sinensis) and cucumber (Cucurmis sativus) seedling planted in 1-100 mg kg(-1) of endosulfan sulfate spiked sand was investigated. Endosulfan sulfate had no apparent toxicity as seedlings of these crop plants grew normally in endosulfan sulfate spiked sand. Concentration of endosulfan sulfate in sand affected the response of seedling induction by NAA or TDZ. Induction of crop seeds by NAA or TDZ did not promote growth of sweet corn, cowpea and cucumber to an appreciable extent. Both plant regulators at concentration of 10 mg l(-1) seemed to exert adverse effect on crop seedling. TDZ decreased shoot length, root length and chlorophyll contents in leaves of sweet corn and cowpea growing in endosulfan sulfate spiked sand. In contrast, NAA was not toxic and promoted growth of sweet corn and cowpea seedling. However, cucumber was affected by NAA and TDZ more than other plants. TDZ significantly decreased biomass and root length of cucumber. Also, NAA significantly decreased cucumber root length and tended to increase cucumber root dried weight when grown in 100 mg kg(-1) of endosulfan sulfate spiked sand.


Subject(s)
Crops, Agricultural/drug effects , Endosulfan/analogs & derivatives , Naphthaleneacetic Acids/pharmacology , Phenylurea Compounds/pharmacology , Seedlings/drug effects , Thiadiazoles/pharmacology , Dose-Response Relationship, Drug , Endosulfan/pharmacology , Insecticides/pharmacology , Plant Shoots/drug effects , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...