Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Lasers Surg Med ; 52(3): 228-234, 2020 03.
Article in English | MEDLINE | ID: mdl-31067361

ABSTRACT

BACKGROUND AND OBJECTIVES: A picosecond infrared laser (PIRL) has recently been demonstrated to cut biological tissue without scar formation based on the minimal destructive action on the surrounding cells. During cutting with PIRL, the irradiated tissue is ablated by a cold vaporization process termed desorption by impulsive vibrational excitation. In the resulting aerosol, all molecules are dissolved in small droplets and even labile biomolecules like proteins remain intact after ablation. It is hypothesized that these properties enable the PIRL in combination with mass spectrometry as an intelligent laser scalpel for guided surgery. In this study, it was tested if PIRL-generated tissue aerosols are applicable for direct analysis with mass spectrometry, and if the acquired mass spectra can be used to discriminate different brain areas. MATERIALS AND METHODS: Brain tissues were irradiated with PIRL. The aerosols were collected and directly infused into a mass spectrometer via electrospray ionization without any sample preparation or lipid extraction. RESULTS: The laser produced clear cuts with no marks of burning. Lipids from five different classes were identified in the mass spectra of all samples. By principal component analysis the different brain areas were clearly distinguishable from each other. CONCLUSIONS: The results demonstrate the potential for real-time analysis of lipids with a PIRL-based laser scalpel, coupled to a mass spectrometer, for the discrimination of tissues during surgeries. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Subject(s)
Aerosols/chemistry , Brain/surgery , Laser Therapy/methods , Lipids/chemistry , Animals , Mass Spectrometry , Swine , Swine, Miniature
2.
J Proteome Res ; 18(3): 1451-1457, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30669834

ABSTRACT

It was recently shown that sampling of tissues with a picosecond infrared laser (PIRL) for analysis with bottom-up proteomics is advantageous compared to mechanical homogenization. Because the cold ablation of tissues with PIRL irradiation is soft, proteins remain intact and even enzymatic activities are detectable in PIRL homogenates. In contrast, it was observed that irradiation of tissues with a microsecond infrared laser (MIRL) heats the tissue, thereby causing significant damage. In this study, we investigated the question if sampling of tissues with a MIRL for analysis of their proteomes via bottom-up proteomics is possible and how the results are different from sampling of tissues with a PIRL. Comparison of the proteomes of the MIRL and PIRL tissue homogenates showed that the yield of proteins identified by bottom-up proteomics was larger in PIRL homogenates of liver tissue, whereas the yield was higher in MIRL homogenates of muscle tissue, which has a significantly higher content of connective tissue than liver tissue. In the PIRL homogenate of renal tissue, enzymatic activities were detectable, whereas in the corresponding MIRL homogenate, enzymatic activities were absent. In conclusion, MIRL and PIRL pulses are suited for sampling tissues for bottom-up proteomics. If it is important for bottom-up proteomic investigations to inactivate enzymatic activities already in the tissue before its ablation, MIRL tissue sampling is an option, because the proteins in the tissues are denatured and inactivated by the heating of the tissue during irradiation with MIRL irradiation prior to the ablation of the tissue. This heating effect is absent during irradiation of tissue with a PIRL; therefore, sampling of tissues with a PIRL is a choice for purifying enzymes, because their activities are maintained.


Subject(s)
Lasers , Proteins/isolation & purification , Proteomics/methods , Infrared Rays , Laser Therapy/methods , Proteins/chemistry , Specimen Handling
3.
Otol Neurotol ; 39(4): e224-e230, 2018 04.
Article in English | MEDLINE | ID: mdl-29533330

ABSTRACT

OBJECTIVE: Using a contact-free laser technique for stapedotomy reduces the risk of mechanical damage of the stapes footplate. However, the risk of inner ear dysfunction due to thermal, acoustic, or direct damage has still not been solved. The objective of this study was to describe the first experiences in footplate perforation in cadaver tissue performed by the novel Picosecond-Infrared-Laser (PIRL), allowing a tissue preserving ablation. PATIENTS AND INTERVENTION: Three human cadaver stapes were perforated using a fiber-coupled PIRL. The results were compared with footplate perforations performed with clinically applied Er:YAG laser. Therefore, two different laser energies for the Er:YAG laser (30 and 60 mJ) were used for footplate perforation of three human cadaver stapes each. MAIN OUTCOME MEASURE: Comparisons were made using histology and environmental scanning electron microscopy (ESEM) analysis. RESULTS: The perforations performed by the PIRL (total energy: 640-1070 mJ) revealed a precise cutting edge with an intact trabecular bone structure and no considerable signs of coagulation. Using the Er:YAG-Laser with a pulse energy of 30 mJ (total energy: 450-600 mJ), a perforation only in the center of the ablation zone was possible, whereas with a pulse energy of 60 mJ (total energy: of 195-260 mJ) the whole ablation zone was perforated. For both energies, the cutting edge appeared irregular with trabecular structure of the bone only be conjecturable and signs of superficial carbonization. CONCLUSION: The microscopic results following stapes footplate perforation suggest a superiority of the PIRL in comparison to the Er:YAG laser regarding the precision and tissue preserving ablation.


Subject(s)
Laser Therapy/methods , Stapes Surgery/methods , Temporal Bone/surgery , Cadaver , Humans , Lasers, Solid-State , Microscopy, Electron, Scanning
4.
Lasers Surg Med ; 48(4): 385-91, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26941063

ABSTRACT

BACKGROUND AND OBJECTIVE: As a result of wound healing the original tissue is replaced by dysfunctional scar tissue. Reduced tissue damage during surgical procedures beneficially affects the size of the resulting scar and overall healing time. Thus the choice of a particular surgical instrument can have a significant influence on the postoperative wound healing. To overcome these problems of wound healing we applied a novel picosecond infrared laser (PIRL) system to surgical incisions. Previous studies indicated that negligible thermal, acoustic, or ionization stress effects to the surrounding tissue results in a superior wound healing. STUDY DESIGN/MATERIALS AND METHODS: Using the PIRL system as a surgical scalpel, we performed a prospective wound healing study on rat skin and assessed its final impact on scar formation compared to the electrosurgical device and cold steel. As for the incisions, 6 full-thickness, 1-cm long-linear skin wounds were created on the dorsum of four rats using the PIRL, an electrosurgical device, and a conventional surgical scalpel, respectively. Rats were euthanized after 21 days of wound healing. The thickness of the subepithelial fibrosis, the depth and the transverse section of the total scar area of each wound were analyzed histologically. RESULTS: After 21 days of wound healing the incisions made by PIRL showed minor scar tissue formation as compared to the electrosurgical device and the scalpel. Highly significant differences (P < 0.001) were noted by comparing the electrosurgical device with PIRL and scalpel. The transverse section of the scar area also showed significant differences (P = 0.043) when comparing PIRL (mean: 141.46 mm2; 95% CI: 105.8-189.0 mm2) with scalpel incisions (mean: 206.82 mm2; 95% CI: 154.8-276.32 mm2). The subepithelial width of the scars that resulted from using the scalpel were 1.3 times larger than those obtained by using the PIRL (95% CI: 1.0-1.6) though the difference was not significant (P < 0.083). CONCLUSIONS: The hypothesis that PIRL results in minimal scar formation with improved cosmetic outcomes was positively verified. In particular the resection of skin tumors or pathological scars, such as hypertrophic scars or keloids, are promising future fields of PIRL application.


Subject(s)
Cicatrix/prevention & control , Dermatologic Surgical Procedures/instrumentation , Infrared Rays/therapeutic use , Laser Therapy/instrumentation , Lasers , Postoperative Complications/prevention & control , Wound Healing , Animals , Cicatrix/etiology , Electrosurgery/instrumentation , Female , Rats , Treatment Outcome
5.
Angew Chem Int Ed Engl ; 54(1): 285-8, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25346525

ABSTRACT

A picosecond IR laser (PIRL) can be used to blast proteins out of tissues through desorption by impulsive excitation (DIVE) of intramolecular vibrational states of water molecules in the cell in less than a millisecond. With PIRL-DIVE proteins covering a range of a few kDa up to several MDa are extracted in high quantities compared to conventional approaches. The chemical composition of extracted proteins remains unaltered and even enzymatic activities are maintained.


Subject(s)
Lasers , Proteins/isolation & purification , Animals , Infrared Rays , Liver/chemistry , Mice , Muscles/chemistry , Proteomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
6.
Eur Arch Otorhinolaryngol ; 270(11): 2927-37, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23708442

ABSTRACT

A comparison of tissue cutting effects in excised cadaver human vocal folds after incisions with three different instruments [scalpel, CO2 laser and the picosecond infrared laser-(PIRL)] was performed. In total, 15 larynges were taken from human cadavers shortly after death. After deep freezing and thawing for the experiment, the vocal folds suspended in the hemilarynx were incised. Histology and environmental scanning electron microscopy (ESEM) analyses were performed. Damage zones after cold instrument cuts ranged from 51 to 135 µm, as compared to 9-28 µm after cutting with the PIRL. It was shown that PIRL incision had smaller zones of tissue coagulation and tissue destruction, when compared with scalpel and CO2 laser cuts. The PIRL technology provides an (almost) atraumatic laser, which offers a quantum jump towards realistic 'micro'-phonosurgery on a factual cellular dimension, almost entirely avoiding coagulation, carbonization, or other ways of major tissue destruction in the vicinity of the intervention area. Although not available for clinical use yet, the new technique appears promising for future clinical applications, so that technical and methodological characteristics as well as tissue experiments seem worthwhile to be communicated at this stage of development.


Subject(s)
Cicatrix/prevention & control , Infrared Rays , Laser Therapy/instrumentation , Lasers, Gas , Microsurgery/instrumentation , Vocal Cords/surgery , Cadaver , Humans , Microscopy, Electron, Scanning , Surgical Instruments/statistics & numerical data , Vocal Cords/pathology , Vocal Cords/ultrastructure , Voice
SELECTION OF CITATIONS
SEARCH DETAIL
...