Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Phys Chem B ; 127(26): 5772-5788, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37357785

ABSTRACT

Fluorescent proteins (FPs) have had an enormous impact on molecular and cellular biology and are employed in a wide range of studies of molecular structure and dynamics. Yet, only a modest number of papers have published molecular dynamics (MD) parameters describing FPs. And despite the development of a wide range of FPs, there has been no careful development of MD parameters across a series of FPs. In this work, we present MD parameters describing six fluorescent protein chromophores (EGFP, EBFP, EYFP, ECFP, mCherry, and DsRed) for use with the Cornell et al. ( J. Am. Chem. Soc. 1995, 117, 5179-5197) family of AMBER force fields, including ff14SB and ff19SB. We explore a wide range of solvent dielectric constants for determining the chromophore equilibrium geometry and evaluate the impact of the modeled solvent on the final atomic charges. We also present our methodological approach in which we considered all six chromophores together with a focus on modularity, transferability, and balance with existing force fields. The parameters given here make it easy to employ MD simulations to study any of the six systems, whereas the methodology makes it easy for anyone to extend this work to develop consistent parameters for additional fluorescent proteins. The results of our own MD simulations are presented, showing that the classical MD parameters yield chromophore structural distributions that compare well with QM/MM simulations.


Subject(s)
Molecular Dynamics Simulation , Molecular Structure , Solvents
2.
Front Public Health ; 9: 672344, 2021.
Article in English | MEDLINE | ID: mdl-34249839

ABSTRACT

Due to the COVID-19 pandemic, higher education institutions were forced to make difficult decisions regarding the 2020-2021 academic year. Many institutions decided to have courses in an online remote format, others decided to attempt an in-person experience, while still others took a hybrid approach. Hope College (Holland, MI) decided that an in-person semester would be safer and more equitable for students. To achieve this at a residential college required broad collaboration across multiple stakeholders. Here, we share lessons learned and detail Hope College's model, including wastewater surveillance, comprehensive testing, contact tracing, and isolation procedures that allowed us to deliver on our commitment of an in-person, residential college experience.


Subject(s)
COVID-19 , Education, Distance , Pandemics , Humans , Pandemics/prevention & control , SARS-CoV-2 , Universities
3.
Environ Monit Assess ; 193(5): 307, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33909163

ABSTRACT

Metal and metalloid contamination in drinking water sources is a global concern, particularly in developing countries. This study used hollow membrane water filters and metal-capturing polyurethane foams to sample 71 drinking water sources in 22 different countries. Field sampling was performed with sampling kits prepared in the lab at Hope College in Holland, MI, USA. Filters and foams were sent back to the lab after sampling, and subsequent analysis of flushates and rinsates allowed the estimation of suspended solids and metal and other analayte concentrations in source waters. Estimated particulate concentrations were 0-92 mg/L, and consisted of quartz, feldspar, and clay, with some samples containing metal oxides or sulfide phases. As and Cu were the only analytes which occurred above the World Health Organization (WHO) guidelines of 10 µg/L and 2000 µg/L, respectively, with As exceeding the guideline in 45% of the sources and Cu in 3%. Except for one value of ~ 285 µg/L, As concentrations were 45-200 µg/L (river), 65-179 µg/L (well), and 112-178 µg/L (tap). Other metals (Ce, Fe, Mg, Mn, Zn) with no WHO guideline were also detected, with Mn the most common. This study demonstrated that filters and foams can be used for reconnaissance characterization of untreated drinking water. However, estimated metal and other analyte concentrations could only be reported as minimum values due to potential incomplete retrieval of foam-bound analytes. A qualitative reporting methodology was used to report analytes as "present" if the concentration was below the WHO guideline, and "present-recommend retesting" if the concentration was quantifiable and above the WHO guideline.


Subject(s)
Drinking Water , Metalloids , Metals, Heavy , Water Pollutants, Chemical , Environmental Monitoring , Humans , Metalloids/analysis , Metals, Heavy/analysis , Netherlands , Water Pollutants, Chemical/analysis
4.
Trop Med Health ; 49(1): 1, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33397511

ABSTRACT

BACKGROUND: Lack of sustainable access to clean drinking water continues to be an issue of paramount global importance, leading to millions of preventable deaths annually. Best practices for providing sustainable access to clean drinking water, however, remain unclear. Widespread installation of low-cost, in-home, point of use water filtration systems is a promising strategy. METHODS: We conducted a prospective, randomized, controlled trial whereby 16 villages were selected and randomly assigned to one of four treatment arms based on the installation location of Sawyer® PointONE™ filters (filter in both home and school; filter in home only; filter in school only; control group). Water samples and self-reported information on diarrhea were collected at multiple times throughout the study. RESULTS: Self-reported household prevalence of diarrhea decreased from 25.6 to 9.76% from installation to follow-up (at least 7 days, and up to 200 days post-filter installation). These declines were also observed in diarrhea with economic or educational consequences (diarrhea which led to medical treatment and/or missing school or work) with baseline prevalence of 9.64% declining to 1.57%. Decreases in diarrhea prevalence were observed across age groups. There was no evidence of a loss of efficacy of filters up to 200 days post-filter installation. Installation of filters in schools was not associated with decreases in diarrhea prevalence in school-aged children or family members. Unfiltered water samples both at schools and homes contained potential waterborne bacterial pathogens, dissolved heavy metals and metals associated with particulates. All dissolved metals were detected at levels below World Health Organization action guidelines. CONCLUSIONS: This controlled trial provides strong evidence of the effectiveness of point-of-use, hollow fiber membrane filters at reducing diarrhea from bacterial sources up to 200 days post-installation when installed in homes. No statistically significant reduction in diarrhea was found when filters were installed in schools. Further research is needed in order to explore filter efficacy and utilization after 200 days post-installation. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03972618 . Registered 3 June 2019-retrospectively registered.

5.
J Phys Chem B ; 117(29): 8649-58, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23799279

ABSTRACT

Cyanine dyes are widely used to study the folding and structural transformations of nucleic acids using fluorescence resonance energy transfer (FRET). The extent to which FRET can be used to extract inter- and intramolecular distances has been the subject of considerable debate in the literature; the contribution of dye and linker dynamics to the observed FRET signal is particularly troublesome. We used molecular dynamics (MD) simulations to study the dynamics of the indocarbocyanine dyes Cy3 and Cy5 attached variously to the 3' or 5' terminal bases of a 16-base-pair RNA duplex. We then used Monte Carlo modeling of dye photophysics to predict the results of single-molecule-sensitive FRET measurements of these same molecules. Our results show that the average value of FRET depends on both the terminal base and the linker position. In particular, 3' attached dyes typically explore a wide region of configuration space, and the relative orientation factor, κ(2), has a distribution that approaches that of free-rotators. This is in contrast to 5' attached dyes, which spend a significant fraction of their time in one or more configurations that are effectively stacked on the ends of the RNA duplex. The presence of distinct dye configurations for 5' attached dyes is consistent with observations, made by others, of multiple fluorescence lifetimes of Cy3 on nucleic acids. Although FRET is frequently used as a molecular "ruler" to measure intramolecular distances, the unambiguous measurement of distances typically relies on the assumption that the rotational degrees of freedom of the dyes can be averaged out and that the donor lifetime in the absence of the acceptor is a constant. We demonstrate that even for the relatively free 3' attached dyes, the correlation time of κ(2) is still too long to justify the use of a free-rotation approximation. We further explore the consequences of multiple donor lifetimes on the predicted value of FRET.


Subject(s)
Carbocyanines/chemistry , Fluorescence Resonance Energy Transfer , Molecular Dynamics Simulation , RNA/chemistry
6.
J Phys Chem A ; 115(16): 3997-4008, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21417498

ABSTRACT

We provide a critical examination of two different methods for generating a donor-acceptor electronic coupling trajectory from a molecular dynamics (MD) trajectory and three methods for sampling that coupling trajectory, allowing the modeling of experimental observables directly from the MD simulation. In the first coupling method we perform a single quantum-mechanical (QM) calculation to characterize the excited state behavior, specifically the transition dipole moment, of the fluorescent probe, which is then mapped onto the configuration space sampled by MD. We then utilize these transition dipoles within the ideal dipole approximation (IDA) to determine the electronic coupling between the probes that mediates the transfer of energy. In the second method we perform a QM calculation on each snapshot and use the complete transition densities to calculate the electronic coupling without need for the IDA. The resulting coupling trajectories are then sampled using three methods ranging from an independent sampling of each trajectory point (the independent snapshot method) to a Markov chain treatment that accounts for the dynamics of the coupling in determining effective rates. The results show that the IDA significantly overestimates the energy transfer rate (by a factor of 2.6) during the portions of the trajectory in which the probes are close to each other. Comparison of the sampling methods shows that the Markov chain approach yields more realistic observables at both high and low FRET efficiencies. Differences between the three sampling methods are discussed in terms of the different mechanisms for averaging over structural dynamics in the system. Convergence of the Markov chain method is carefully examined. Together, the methods for estimating coupling and for sampling the coupling provide a mechanism for directly connecting the structural dynamics modeled by MD with fluorescence observables determined through FRET experiments.


Subject(s)
Fluorescence , Models, Chemical , Molecular Dynamics Simulation , Quantum Theory , Fluorescent Dyes/chemistry , Models, Molecular , Muramidase/chemistry , Muramidase/metabolism
7.
Biophys J ; 96(12): 4779-88, 2009 Jun 17.
Article in English | MEDLINE | ID: mdl-19527638

ABSTRACT

With recent growth in the use of fluorescence-detected resonance energy transfer (FRET), it is being applied to complex systems in modern and diverse ways where it is not always clear that the common approximations required for analysis are applicable. For instance, the ideal dipole approximation (IDA), which is implicit in the Förster equation, is known to break down when molecules get "too close" to each other. Yet, no clear definition exists of what is meant by "too close". Here we examine several common fluorescent probe molecules to determine boundaries for use of the IDA. We compare the Coulombic coupling determined essentially exactly with a linear response approach with the IDA coupling to find the distance regimes over which the IDA begins to fail. We find that the IDA performs well down to roughly 20 A separation, provided the molecules sample an isotropic set of relative orientations. However, if molecular motions are restricted, the IDA performs poorly at separations beyond 50 A. Thus, isotropic probe motions help mask poor performance of the IDA through cancellation of error. Therefore, if fluorescent probe motions are restricted, FRET practitioners should be concerned with not only the well-known kappa2 approximation, but also possible failure of the IDA.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Dimerization , Fluorescent Dyes/chemistry , Models, Molecular , Molecular Conformation , Sensitivity and Specificity
8.
J Phys Chem A ; 113(16): 4639-46, 2009 Apr 23.
Article in English | MEDLINE | ID: mdl-19265388

ABSTRACT

FRET experiments enable studies of the chemical and physical properties of individual molecules, which has long been a dream of chemists. However, these modern experimental techniques are still limited by the lack of information about the dynamic behavior of the fluorescent labels as well as by the use of dipole-dipole approximation even at short donor-to-acceptor distances. Our results help to suggest that these assumptions need to be carefully considered when designing experiments. We show that at short donor-acceptor separation, dipole-dipole approximation breaks down and Forster theory fails and cannot be used to obtain correct distances. We also explicitly demonstrate that dyes' linkers allow for a lot of flexibility in the fluorescent label orientation and position resulting in distances much shorter than assumed earlier.


Subject(s)
Models, Molecular , Peptides/chemistry , Calibration , Coloring Agents/chemistry , Fluorescence Resonance Energy Transfer , Molecular Conformation , Sensitivity and Specificity
9.
J Comput Chem ; 28(9): 1572-1581, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17342706

ABSTRACT

We have explored the impact of a number of basic simulation parameters on the results of a recently developed hybrid molecular dynamics-quantum mechanics (MD-QM) method (Mercer et al., J Phys Chem B 1999, 103, 7720). The method utilizes MD simulations to explore the ground-state configuration space of the system and QM evaluation of those structures to yield the time-dependent electronic transition energy, which is transformed into the optical line-broadening function using the second-order cumulant expansion. Both linear and nonlinear optical spectra can then be generated for comparison to experiment. The dependence of the resulting spectra on the length of the MD trajectory, the QM sampling rate, and the QM model chemistry have all been examined. In particular, for the system of oxazine-4 in methanol studied here, at least 20 ps of MD trajectory are needed for qualitative convergence of linear spectral properties, and >100 ps is needed for quantitative convergence. Surprisingly, little difference is found between the 3-21G and 6-31G(d) basis sets, and the CIS and TD-B3LYP methods yield remarkably similar spectra. The semiempirical INDO/s method yields the most accurate results, reproducing the experimental Stokes shift to within 5% and the FWHM to within 20%. Nonlinear 3-pulse photon echo peak shift (3PEPS) decays have also been simulated. Decays are generally poorly reproduced, though the initial peak shift which depends on the overall coupling of motions to the solute transition energy is within 15% of experiment for all model chemistries other than those using the STO-3G basis.


Subject(s)
Computer Simulation , Molecular Structure , Time Factors
10.
Biophys J ; 92(12): 4168-78, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17384068

ABSTRACT

Molecular dynamics simulations were used to examine the structural dynamics of two fluorescent probes attached to a typical protein, hen egg-white lysozyme (HEWL). The donor probe (D) was attached via a succinimide group, consistent with the commonly-used maleimide conjugation chemistry, and the acceptor probe (A) was bound into the protein as occurs naturally for HEWL and the dye Eosin Y. The is found to deviate significantly from the theoretical value and high correlation between the orientation factor kappa and the distance R is observed. The correlation is quantified using several possible fixed A orientations and correlation as high as 0.80 is found between kappa and R and as high as 0.68 between kappa(2) and R. The presence of this correlation highlights the fact that essentially all fluorescence-detected resonance energy transfer studies have assumed that kappa and R are independent--an assumption that is clearly not justified in the system studied here. The correlation results in the quantities and < R(-)(6)> differing by a factor of 1.6. The observed correlation between kappa and R is caused by the succinimide linkage between the D and HEWL, which is found to be relatively inflexible.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Models, Chemical , Models, Molecular , Muramidase/chemistry , Muramidase/ultrastructure , Binding Sites , Computer Simulation , Protein Binding , Reproducibility of Results , Sensitivity and Specificity , Statistics as Topic
11.
J Phys Chem B ; 110(6): 2899-909, 2006 Feb 16.
Article in English | MEDLINE | ID: mdl-16471900

ABSTRACT

Steady-state fluorescence measurements on the deoxytrinucleotides (5')dTp2APpA(3') and (5')dAp2APpA(3') show a temperature-dependence and a viscosity-dependence for energy transfer that qualitatively differ from those seen in our previous study of charge transfer (CT) in these systems. Time-resolved anisotropy studies and molecular dynamics simulations are presented that provide a detailed characterization of the structural dynamics of these systems and how these fluctuations modulate the electronic interaction between 2AP and its neighbors. To gain quantitative insight into the interplay of conformational fluctuations and stacking-induced energy transfer, we present results from a new hybrid quantum-classical simulation method for computing the A --> 2AP energy transfer rate that makes use of the full three-dimensional nature of the donor and acceptor transition densities. Analysis of the results shows that the standard transition dipole-transition dipole approximation for the Coulombic coupling substantially overestimates the transfer rate and that the nearest neighbor energy transfer from adenine to 2AP occurs on a much faster time scale than that for CT. This suggests that, unlike the CT dynamics where conformational "gating" plays a critical role, the large amplitude fluctuations that modulate the process are largely "frozen" out on the energy transfer time scale.


Subject(s)
2-Aminopurine/chemistry , Adenine/chemistry , DNA, Single-Stranded/chemistry , Energy Transfer , Models, Chemical , Molecular Structure , Temperature , Time Factors
12.
J Phys Chem B ; 109(23): 11512-9, 2005 Jun 16.
Article in English | MEDLINE | ID: mdl-16852410

ABSTRACT

We present a theoretical investigation of energy transfer in the phenylene ethynelene dendrimer known as the nanostar. Data from extensive molecular dynamics simulations are used to model the dynamical effects caused by torsional motion of the phenyl groups. We compare rate constants for energy transfer between the two-ring chromophore and the three-ring chromophore obtained via the Förster model, the ideal dipole approximation (IDA), and the transition density cube (TDC) method, which has as its limit an exact representation of the Coulombic coupling. We find that the rate constants obtained with the TDC are extremely sensitive to the phenyl group rotation, whereas the constants computed with the Förster model and the IDA are not. The implications of these results for the interpretation of recent pump-probe experiments on the nanostar are discussed in detail. Finally, we predict the temperature dependence of the rate constant for energy transfer.

13.
Biophys J ; 84(1): 450-65, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12524298

ABSTRACT

Three pulse echo peak shift and transient grating (TG) measurements on the plant light-harvesting complexes LHCII and CP29 are reported. The LHCII complex is by far the most abundant light-harvesting complex in higher plants and fulfills several important physiological functions such as light-harvesting and photoprotection. Our study is focused on the light-harvesting function of LHCII and the very similar CP29 complex and reveals hitherto unresolved excitation energy transfer processes. All measurements were performed at room temperature using detergent isolated complexes from spinach leaves. Both complexes were excited in their Chl b band at 650 nm and in the blue shoulder of the Chl a band at 670 nm. Exponential fits to the TG and three pulse echo peak shift decay curves were used to estimate the timescales of the observed energy transfer processes. At 650 nm, the TG decay can be described with time constants of 130 fs and 2.2 ps for CP29, and 300 fs and 2.8 ps for LHCII. At 670 nm, the TG shows decay components of 230 fs and 6 ps for LHCII, and 300 fs and 5 ps for CP29. These time constants correspond to well-known energy transfer processes, from Chl b to Chl a for the 650 nm TG and from blue (670 nm) Chl a to red (680 nm) Chl a for the 670 nm TG. The peak shift decay times are entirely different. At 650 nm we find times of 150 fs and 0.5-1 ps for LHCII, and 360 fs and 3 ps for CP29, which we can associate mainly with Chl b <--> Chl b energy transfer. At 670 nm we find times of 140 fs and 3 ps for LHCII, and 3 ps for CP29, which we can associate with fast (only in LHCII) and slow transfer between relatively blue Chls a or Chl a states. From the occurrence of both fast Chl b <--> Chl b and fast Chl b --> Chl a transfer in CP29, we conclude that at least two mixed binding sites are present in this complex. A detailed comparison of our observed rates with exciton calculations on both CP29 and LHCII provides us with more insight in the location of these mixed sites. Most importantly, for CP29, we find that a Chl b pair must be present in some, but not all, complexes, on sites A(3) and B(3). For LHCII, the observed rates can best be understood if the same pair, A(3) and B(3), is involved in both fast Chl b <--> Chl b and fast Chl a <--> Chl a transfer. Hence, it is likely that mixed sites also occur in the native LHCII complex. Such flexibility in chlorophyll binding would agree with the general flexibility in aggregation form and xanthophyll binding of the LHCII complex and could be of use for optimizing the role of LHCII under specific circumstances, for example under high-light conditions. Our study is the first to provide spectroscopic evidence for mixed binding sites, as well as the first to show their existence in native complexes.


Subject(s)
Light-Harvesting Protein Complexes , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/radiation effects , Photosystem II Protein Complex , Energy Transfer , Lasers , Light , Photosynthetic Reaction Center Complex Proteins/isolation & purification , Plant Leaves/chemistry , Spectrophotometry/methods , Spinacia oleracea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...