Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Bioengineering (Basel) ; 11(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38391655

ABSTRACT

This article aims to develop a method to automatically generate CFD-based compartment models. This effort to simplify mixing models aims at capturing the interactions between material transport and chemical/biochemical conversions in large-scale reactors. The proposed method converts the CFD results into a system of mass balance equations for each defined component. The compartmentalization method is applied to two bioreactor geometries and was able to replicate tracer mixing profiles observed in CFD simulations. The generated compartment models were successfully coupled with, a simple Monod-type biokinetic model describing microbial growth, substrate consumption and product formation. The coupled model was used to simulate a four-hour fermentation in a 190 L reactor and a 10 m3 reactor. Resolving the substrate gradients had a clear impact on the biokinetics, increasing with the scale of the reactor. Moreover, the coupled model could simulate the fermentation faster than real-time. Having a real-time-solvable model is essential for implementations in digital twins and other real-time applications using the models as predictive tools.

2.
Adv Biochem Eng Biotechnol ; 176: 1-34, 2021.
Article in English | MEDLINE | ID: mdl-33349908

ABSTRACT

The bio-manufacturing industry, along with other process industries, now has the opportunity to be engaged in the latest industrial revolution, also known as Industry 4.0. To successfully accomplish this, a physical-to-digital-to-physical information loop should be carefully developed. One way to achieve this is, for example, through the implementation of digital twins (DTs), which are virtual copies of the processes. Therefore, in this paper, the focus is on understanding the needs and challenges faced by the bio-manufacturing industry when dealing with this digitalized paradigm. To do so, two major building blocks of a DT, data and models, are highlighted and discussed. Hence, firstly, data and their characteristics and collection strategies are examined as well as new methods and tools for data processing. Secondly, modelling approaches and their potential of being used in DTs are reviewed. Finally, we share our vision with regard to the use of DTs in the bio-manufacturing industry aiming at bringing the DT a step closer to its full potential and realization.


Subject(s)
Industry , Manufacturing Industry
3.
Biosensors (Basel) ; 10(3)2020 Feb 29.
Article in English | MEDLINE | ID: mdl-32121446

ABSTRACT

In this work, a disposable passive microfluidic device for cell culturing that does not require any additional/external pressure sources is introduced. By regulating the height of fluidic columns and the aperture and closure of the source wells, the device can provide different media and/or drug flows, thereby allowing different flow patterns with respect to time. The device is made of two Polymethylmethacrylate (PMMA) layers fabricated by micro-milling and solvent assisted bonding and allows us to ensure a flow rate of 18.6 µl/ℎ - 7%/day, due to a decrease of the fluid height while the liquid is driven from the reservoirs into the channels. Simulations and experiments were conducted to characterize flows and diffusion in the culture chamber. Melanoma tumor cells were used to test the device and carry out cell culturing experiments for 48 hours. Moreover, HeLa, Jurkat, A549 and HEK293T cell lines were cultivated successfully inside the microfluidic device for 72 hours.


Subject(s)
Cell Culture Techniques/methods , Microfluidics/methods , Humans
4.
Micromachines (Basel) ; 10(8)2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31434220

ABSTRACT

This work presents a disposable passive microfluidic system, allowing chemotaxis studies, through the generation of a concentration gradient. The device can handle liquid flows without an external supply of pressure or electric gradients, but simply using gravity force. It is able to ensure flow rates of 10 µL/h decreasing linearly with 2.5% in 24 h. The device is made of poly(methylmethacrylate) (PMMA), a biocompatible material, and it is fabricated by micro-milling and solvent assisted bonding. It is assembled into a mini incubator, designed properly for cell biology studies in passive microfluidic devices, which provides control of temperature and humidity levels, a contamination-free environment for cells with air and 5% of CO2. Furthermore, the mini incubator can be mounted on standard inverted optical microscopes. By using our microfluidic device integrated into the mini incubator, we are able to evaluate and follow in real-time the migration of any cell line to a chemotactic agent. The device is validated by showing cell migration at a rate of 0.36 µm/min, comparable with the rates present in scientific literature.

5.
Trends Biotechnol ; 37(7): 697-706, 2019 07.
Article in English | MEDLINE | ID: mdl-30737008

ABSTRACT

Miniaturized stirred bioreactors (MSBRs) are gaining popularity as a cost-effective approach to scale-down experimentation. However, realizing conditions that reflect the large-scale process accurately can be challenging. This article highlights common challenges of using MSBRs for scale-down. The fundamental difference between oxygen mass transfer coefficient (kLa) and oxygen transfer rate scaling is addressed and the difficulty of achieving turbulent flow and industrially relevant tip speeds is described. More practical challenges of using MSBR systems for scale-down are also discussed, including the risk of vortex formation, changed volume dynamics, and wall growth. By highlighting these challenges, the article aims to create more awareness of these difficulties and to contribute to improved design of scale-down experiments.


Subject(s)
Bioreactors/microbiology , Biotechnology/methods , Industrial Microbiology/methods , Models, Biological , Oxygen/metabolism
6.
Biotechnol Bioeng ; 116(4): 769-780, 2019 04.
Article in English | MEDLINE | ID: mdl-30450609

ABSTRACT

The formation of pH gradients in a 700 L batch fermentation of Streptococcus thermophilus was studied using multi-position pH measurements and computational fluid dynamics (CFD) modeling. To this end, a dynamic, kinetic model of S. thermophilus and a pH correlation were integrated into a validated one-phase CFD model, and a dynamic CFD simulation was performed. First, the fluid dynamics of the CFD model were validated with NaOH tracer pulse mixing experiments. Mixing experiments and simulations were performed whereas multiple pH sensors, which were placed vertically at different locations in the bioreactor, captured the response. A mixing time of about 46 s to reach 95% homogeneity was measured and predicted at an impeller speed of 242 rpm. The CFD simulation of the S. thermophilus fermentation captured the experimentally observed pH gradients between a pH of 5.9 and 6.3, which occurred during the exponential growth phase. A pH higher than 7 was predicted in the vicinity of the base solution inlet. Biomass growth, lactic acid production, and substrate consumption matched the experimental observations. Moreover, the biokinetic results obtained from the CFD simulation were similar to a single-compartment simulation, for which a homogeneous distribution of the pH was assumed. This indicates no influence of pH gradients on growth in the studied bioreactor. This study verified that the pH gradients during a fermentation in the pilot-scale bioreactor could be accurately predicted using a coupled simulation of a biokinetic and a CFD model. To support the understanding and optimization of industrial-scale processes, future biokinetic CFD studies need to assess multiple types of environmental gradients, like pH, substrate, and dissolved oxygen, especially at industrial scale.


Subject(s)
Hydrodynamics , Proton-Motive Force , Streptococcus thermophilus/metabolism , Batch Cell Culture Techniques , Bioreactors , Computer Simulation , Equipment Design , Fermentation , Hydrogen-Ion Concentration , Models, Biological
7.
Biotechnol Adv ; 36(7): 1801-1814, 2018 11 15.
Article in English | MEDLINE | ID: mdl-29864458

ABSTRACT

The application of conventional organic solvents has been essential in several steps of bioprocesses in order to achieve sufficient economic efficiency. The use of organic solvents is frequently used either to partly or fully replace water in the reaction medium or as a process aid for downstream separation. Nowadays, manufacturers are increasingly requested to avoid and substitute solvents with hazardous potential. Therefore, the solvent selection must account for potential environmental hazards, health and safety problems, in addition to fulfilling the ideal characteristics for application in a process. For the first time, criteria including Environment, Health and Safety (EHS), as well as the technical requirements for reaction and separation have been reviewed, collected and integrated in a single organic solvent screening strategy to be used as a guideline for narrowing down the list of solvents to test experimentally. Additionally, we have also included a solvent selection guide based on the methodology developed in the Innovative Medicines Initiative CHEM21 (IMI CHEM21) project and applied specifically to water-immiscible solvents commonly used in bioprocesses.


Subject(s)
Biotechnology , Biotransformation , Solvents , Bioreactors , Carboxylic Acids
8.
Biotechnol Adv ; 36(4): 1341-1366, 2018.
Article in English | MEDLINE | ID: mdl-29733891

ABSTRACT

From its birth, microfluidics has been referenced as a revolutionary technology and the solution to long standing technological and sociological issues, such as detection of dilute compounds and personalized healthcare. Microfluidics has for example been envisioned as: (1) being capable of miniaturizing industrial production plants, thereby increasing their automation and operational safety at low cost; (2) being able to identify rare diseases by running bioanalytics directly on the patient's skin; (3) allowing health diagnostics in point-of-care sites through cheap lab-on-a-chip devices. However, the current state of microfluidics, although technologically advanced, has so far failed to reach the originally promised widespread use. In this paper, some of the aspects are identified and discussed that have prevented microfluidics from reaching its full potential, especially in the chemical engineering and biotechnology fields, focusing mainly on the specialization on a single target of most microfluidic devices and offering a perspective on the alternate, multi-use, "plug and play" approach. Increasing the flexibility of microfluidic platforms, by increasing their compatibility with different substrates, reactions and operation conditions, and other microfluidic systems is indeed of surmount importance and current academic and industrial approaches to modular microfluidics are presented. Furthermore, two views on the commercialization of plug-and-play microfluidics systems, leading towards improved acceptance and more widespread use, are introduced. A brief review of the main materials and fabrication strategies used in these fields, is also presented. Finally, a step-wise guide towards the development of microfluidic systems is introduced with special focus on the integration of sensors in microfluidics. The proposed guidelines are then applied for the development of two different example platforms, and to three examples taken from literature. With this work, we aim to provide an interesting perspective on the field of microfluidics when applied to chemical engineering and biotechnology studies, as well as to contribute with potential solutions to some of its current challenges.


Subject(s)
Biotechnology , Microfluidics , Animals , Biosensing Techniques , Humans , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques
9.
Bioengineering (Basel) ; 5(2)2018 Apr 09.
Article in English | MEDLINE | ID: mdl-29642515

ABSTRACT

Selective oxidative functionalization of molecules is a highly relevant and often demanding reaction in organic chemistry. The use of biocatalysts allows the stereo- and regioselective introduction of oxygen molecules in organic compounds at milder conditions and avoids the use of complex group-protection schemes and toxic compounds usually applied in conventional organic chemistry. The identification of enzymes with the adequate properties for the target reaction and/or substrate requires better and faster screening strategies. In this manuscript, a microchannel with integrated oxygen sensors was applied to the screening of wild-type and site-directed mutated variants of naphthalene dioxygenase (NDO) from Pseudomonas sp. NICB 9816-4. The oxygen sensors were used to measure the oxygen consumption rate of several variants during the conversion of styrene to 1-phenylethanediol. The oxygen consumption rate allowed the distinguishing of endogenous respiration of the cell host from the oxygen consumed in the reaction. Furthermore, it was possible to identify the higher activity and different reaction rate of two variants, relative to the wild-type NDO. The meander microchannel with integrated oxygen sensors can therefore be used as a simple and fast screening platform for the selection of dioxygenase mutants, in terms of their ability to convert styrene, and potentially in terms of substrate specificity.

10.
Bioengineering (Basel) ; 5(2)2018 Apr 24.
Article in English | MEDLINE | ID: mdl-29695105

ABSTRACT

Due to the sensitivity of mammalian cell cultures, understanding the influence of operating conditions during a tissue generation procedure is crucial. In this regard, a detailed study of scaffold based cell culture under a perfusion flow is presented with the aid of mathematical modelling and computational fluid dynamics (CFD). With respect to the complexity of the case study, this work focuses solely on the effect of nutrient and metabolite concentrations, and the possible influence of fluid-induced shear stress on a targeted cell (cartilage) culture. The simulation set up gives the possibility of predicting the cell culture behavior under various operating conditions and scaffold designs. Thereby, the exploitation of the predictive simulation into a newly developed stochastic routine provides the opportunity of exploring improved scaffold geometry designs. This approach was applied on a common type of fibrous structure in order to increase the process efficiencies compared with the regular used formats. The suggested topology supplies a larger effective surface for cell attachment compared to the reference design while the level of shear stress is kept at the positive range of effect. Moreover, significant improvement of mass transfer is predicted for the suggested topology.

SELECTION OF CITATIONS
SEARCH DETAIL