Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr A Found Adv ; 75(Pt 2): 342-351, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30821267

ABSTRACT

A structural characterization of W/Si multilayers using X-ray reflectivity (XRR), scanning transmission electron microscopy (STEM) and grazing-incidence small-angle X-ray scattering (GISAXS) is presented. STEM images revealed lateral, periodic density fluctuations in the Si layers, which were further analysed using GISAXS. Characteristic parameters of the fluctuations such as average distance between neighbouring fluctuations, average size and lateral distribution of their position were obtained by fitting numerical simulations to the measured scattering images, and these parameters are in good agreement with the STEM observations. For the numerical simulations the density fluctuations were approximated as a set of spheroids distributed inside the Si layers as a 3D paracrystal (a lattice of spheroids with short-range ordering but lacking any long-range order). From GISAXS, the density of the material inside the density fluctuations is calculated to be 2.07 g cm-3 which is 89% of the bulk value of the deposited layer (2.33 g cm-3).

2.
Acta Crystallogr A Found Adv ; 74(Pt 5): 545-552, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30182941

ABSTRACT

Grazing-incidence X-ray diffraction (GID) is a well known technique for the characterization of crystal surfaces. A theoretical study has been performed of the sensitivity of GID to the structure of a crystal surface and distorted nanometre-thin surface layers. To simulate GID from crystals that have a complex subsurface structure, a matrix formalism of the dynamical diffraction theory has been applied. It has been found that the azimuthal rocking curves of a crystal that has a distorted subsurface, measured over a wide angular range, show asymmetric thickness oscillations with two distinguishable sets of frequencies: one corresponding to the diffraction in the single-crystal subsurface layer and the second corresponding to the diffraction in the single-crystal substrate. Therefore, azimuthal rocking curves allow characterization of the subsurface structure of a single crystal. Furthermore, thickness oscillations induced by evanescent diffraction modulate the specular reflection intensity, showing high-intensity modulations. This will potentially allow implementation of subsurface crystal characterization using, for instance, a laboratory-scale X-ray diffractometer.

SELECTION OF CITATIONS
SEARCH DETAIL
...