Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Res ; 32(23): 4342-4353, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-32499666

ABSTRACT

The origin of the extraordinary strengthening of the highly-alloyed austenitic stainless steel Sanicro 25 during cyclic loading at 700°C was investigated by use of advanced scanning transmission electron microscopy (STEM). Along with substantial change of dislocation structure, nucleation of two distinct populations of nanoparticles was revealed. Fully coherent Cu-rich nanoparticles were observed homogeneously dispersed with high density along with nanometer-sized incoherent NbC carbides precipitating on dislocations during cyclic loading. Probe-corrected HAADF STEM imaging was used to characterize the atomic structure of nanoparticles. Compositional analysis was conducted using both EELS and high spatial resolution EDS. High temperature exposure induced precipitation of a high density of coherent Cu-rich nanoparticles while strain-induced nucleation of incoherent NbC nanoparticles leads to retardation of dislocation movement. The pinning effects and associated obstacles to dislocation motion prevent recovery and formation of the localized low-energy cellular structures. As a consequence, the alloy exhibits remarkable cyclic hardening at elevated temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...