Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36626785

ABSTRACT

AIMS: To evaluate the antimicrobial activity and to determine the pharmacodynamic characteristics of three 8-hydroxyquinoline derivatives (8-HQs) against Pythium insidiosum, the causative agent of pythiosis. METHODS AND RESULTS: Antimicrobial activity was tested by broth microdilution and MTT assays. The antimicrobial mode of action was investigated using sorbitol protection assay, ergosterol binding assay, and scanning electron microscopy. Clioquinol, PH151, and PH153 were active against all isolates, with MIC values ranging from 0.25 to 2 µg ml-1. They also showed a time- and dose-dependent antimicrobial effect, damaging the P. insidiosum cell wall. CONCLUSIONS: Together, these results reinforce the potential of 8-HQs for developing new drugs to treat pythiosis.

2.
Biomolecules ; 9(12)2019 12 05.
Article in English | MEDLINE | ID: mdl-31817559

ABSTRACT

Cryptococcus neoformans is an encapsulated yeast responsible for more than 180,000 deaths per year. The standard therapeutic approach against cryptococcosis is a combination of amphotericin B with flucytosine. In countries where cryptococcosis is most prevalent, 5-fluorocytosine is rarely available, and amphotericin B requires intravenous administration. C. neoformans biofilm formation is related to increased drug resistance, which is an important outcome for hospitalized patients. Here, we describe new molecules with anti-cryptococcal activity. A collection of 66 semisynthetic derivatives of ursolic acid and betulinic acid was tested against mature biofilms of C. neoformans at 25 µM. Out of these, eight derivatives including terpenes, benzazoles, flavonoids, and quinolines were able to cause damage and eradicate mature biofilms. Four terpene compounds demonstrated significative growth inhibition of C. neoformans. Our study identified a pentacyclic triterpenoid derived from betulinic acid (LAFIS13) as a potential drug for anti-cryptococcal treatment. This compound appears to be highly active with low toxicity at minimal inhibitory concentration and capable of biofilm eradication.


Subject(s)
Biofilms/drug effects , Cryptococcosis/prevention & control , Cryptococcus neoformans/physiology , Pentacyclic Triterpenes/pharmacology , Cell Line , Cryptococcosis/microbiology , Cryptococcus neoformans/drug effects , Drug Resistance, Fungal/drug effects , Humans , Microbial Sensitivity Tests , Molecular Structure , Pentacyclic Triterpenes/chemistry , Triterpenes/chemistry , Betulinic Acid , Ursolic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...