Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 214: 108884, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38945096

ABSTRACT

The phytohormones cytokinins are essential mediators of developmental and environmental signaling, primarily during cell division and endophytic interactions, among other processes. Considering the limited understanding of the regulatory mechanisms that affect the growth and bioactivity of the medicinal plant Nepeta nuda (Lamiaceae), our study aimed to explore how cytokinins influence the plant's metabolic status. Exogenous administration of active cytokinin forms on in vitro N. nuda internodes stimulated intensive callus formation and de novo shoot regeneration, leading to a marked increase in biomass. This process involved an accumulation of oxidants, which were scavenged by peroxidases using phenolics as substrates. The callus tissue formed upon the addition of the cytokinin 6-benzylaminopurine (BAP) acted as a sink for sugars and phenolics during the allocation of nutrients between the culture medium and regenerated plants. In accordance, the cytokinin significantly enhanced the content of polar metabolites and their respective in vitro biological activities compared to untreated in vitro and wild-grown plants. The BAP-mediated accumulation of major phenolic metabolites, rosmarinic acid (RA) and caffeic acid (CA), corresponded with variations in the expression levels of genes involved in their biosynthesis. In contrast, the accumulation of iridoids and the expression of corresponding biosynthetic genes were not significantly affected. In conclusion, our study elucidated the mechanism of cytokinin action in N. nuda in vitro culture and demonstrated its potential in stimulating the production of bioactive compounds. This knowledge could serve as a basis for further investigations of the environmental impact on plant productivity.

2.
Plants (Basel) ; 11(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432909

ABSTRACT

Ludisia discolor is commonly known as a jewel orchid due to its variegated leaves. Easy maintenance of the orchid allows it to be used as a test system for various fertilizers and nutrient sources, including aquaponic water (AW). First, we applied DNA barcoding to assess the taxonomic identity of this terrestrial orchid and to construct phylogenetic trees. Next, the vegetative organs (leaf, stem, and root) were compared in terms of the level of metabolites (reducing sugars, proteins, anthocyanins, plastid pigments, phenolics, and antioxidant activity) and nutrient elements (carbon, nitrogen, sodium, and potassium), which highlighted the leaves as most functionally active organ. Subsequently, AW was used as a natural source of fish-derived nutrients, and the orchid growth was tested in hydroponics, in irrigated soil, and in an aquaponic system. Plant physiological status was evaluated by analyzing leaf anatomy and measuring chlorophyll content and chlorophyll fluorescence parameters. These results provided evidence of the beneficial effects of AW on the jewel orchid, including increased leaf formation, enhanced chlorophyll content and photosystems' productivity, and stimulated and prolonged flowering. The information acquired in the present study could be used in addressing additional aspects of the growth and development of the jewel orchid, which is also known for its medicinal value.

3.
Eng Life Sci ; 17(9): 970-975, 2017 Sep.
Article in English | MEDLINE | ID: mdl-32624846

ABSTRACT

Hyaluronic acid (HA) dispersion obtained from the bacteria Streptococcus equi was concentrated by electrofiltration. In the conventional downstream processing of HA, extraction and precipitation lead to increase in environmental issues, structural changes, and time and energy related costs. Using electrofiltration as an alternative technology delivers solutions to these limitations. Experiments were conducted in order to test the applicability of electrofiltration to downstream processing of the negatively charged HA. The structural changes and molecular weight distributions, often a consequence of the employed separation method, were tested by analysis of the initial dispersions and final products. In comparison to the conventional filtration, concentration factors were increased up to almost four times without any detectable structural change in the final product.

4.
J Biotechnol ; 132(4): 481-6, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-17900736

ABSTRACT

The yeasts Schizosaccharomyces pombe and Candida glabrata were successfully cultivated in a fed-batch process at cadmium levels up to 100 mg l(-1). S. pombe incorporated 20 mg C dg(-1) dry biomass within 24h. C. glabrata accumulated 8 mg C dg(-1) dry biomass in 24h. The higher Cd uptake from S. pombe cells correlate with the elevated glucose concentrations during and at the end of the cultivation. Analysis of the cells with energy-filtering transmission electron microscopy-element specific imaging (EFTEM-ESI) revealed that cadmium is not precipitated outside the cells or at the cell wall but evenly distributed inside the cell plasma. As Cd is highly toxic this indicates that Cd is immobilized by an intracellular detoxification mechanism. Size exclusion chromatography showed that Cd is associated to a protein fraction between 25 and 67 kDa which corresponds to the theoretical molecular weight of CdS nanoparticles of 35 kDa coated with phytochelatins. This structure has been proposed in literature.


Subject(s)
Cadmium Compounds/metabolism , Nanoparticles/microbiology , Phytochelatins/metabolism , Sulfates/metabolism , Biomass , Bioreactors , Cadmium/metabolism , Cadmium Compounds/chemistry , Candida glabrata/metabolism , Glucose/metabolism , Microscopy, Electron, Transmission/methods , Phytochelatins/isolation & purification , Schizosaccharomyces/metabolism , Sulfates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...