Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 10(4)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38667912

ABSTRACT

Sialidases (neuraminidases) catalyze the removal of terminal sialic acid residues from glycoproteins. Novel enzymes from non-clinical isolates are of increasing interest regarding their application in the food and pharmaceutical industry. The present study aimed to evaluate the participation of carbon catabolite repression (CCR) in the regulation of cold-active sialidase biosynthesis by the psychrotolerant fungal strain Penicillium griseofulvum P29, isolated from Antarctica. The presence of glucose inhibited sialidase activity in growing and non-growing fungal mycelia in a dose- and time-dependent manner. The same response was demonstrated with maltose and sucrose. The replacement of glucose with glucose-6-phosphate also exerted CCR. The addition of cAMP resulted in the partial de-repression of sialidase synthesis. The CCR in the psychrotolerant strain P. griseofulvum P29 did not depend on temperature. Sialidase might be subject to glucose repression by both at 10 and 25 °C. The fluorescent assay using 4MU-Neu5Ac for enzyme activity determination under increasing glucose concentrations evidenced that CCR may have a regulatory role in sialidase production. The real-time RT-PCR experiments revealed that the sialidase gene was subject to glucose repression. To our knowledge, this is the first report that has studied the effect of CCR on cold-active sialidase, produced by an Antarctic strain.

2.
Int J Biol Macromol ; 268(Pt 1): 131702, 2024 May.
Article in English | MEDLINE | ID: mdl-38643917

ABSTRACT

Chitosan-based nanocomposites (CS NCs) are gaining considerable attention as multifaceted antifungal agents. This study investigated the antifungal activity of NCs against two phytopathogenic strains: Fusarium solani (F. solani) and Alternaria solani (A. solani). Moreover, it sheds light on their underlying mechanisms of action. The NCs, CS-ZnO, CS-CuO, and CS-SiO2, were characterized using advanced methods. Dynamic and electrophoretic light scattering techniques revealed their size range (60-170 nm) and cationic nature, as indicated by the positive zeta potential values (from +16 to +22 mV). Transmission electron microscopy revealed the morphology of the NCs as agglomerates formed between the chitosan and oxide components. X-ray diffraction patterns confirmed crystalline structures with specific peaks indicating their constituents. Antifungal assessments using the agar diffusion technique demonstrated significant inhibitory effects of the NCs on both fungal strains (1.5 to 4-fold), surpassing the performance of the positive control, nystatin. Notably, the NCs exhibited superior antifungal potency, with CS-ZnO NCs being the most effective. A. solani was the most sensitive strain to the studied agents. Furthermore, the tested NCs induced oxidative stress in fungal cells, which elevated stress biomarker levels, such as superoxide dismutase (SOD) activity and protein carbonyl content (PCC), 2.5 and 6-fold for the most active CS-CuO in F. solani respectively. Additionally, they triggered membrane lipid peroxidation up to 3-fold higher compared to control, a process that potentially compromises membrane integrity. Laurdan fluorescence spectroscopy highlighted alterations in the molecular organization of fungal cell membranes induced by the NCs. CS-CuO NCs induced a membrane rigidifying effect, while CS-SiO2 and CS-ZnO could rigidify membranes in A. solani and fluidize them in F. solani. In summary, this study provides an in-depth understanding of the interactions of CS-based NCs with two fungal strains, showing their antifungal activity and offering insights into their mechanisms of action. These findings emphasize the potential of these NCs as effective and versatile antifungal agents.


Subject(s)
Alternaria , Antifungal Agents , Chitosan , Copper , Fusarium , Nanocomposites , Silicon Dioxide , Zinc Oxide , Fusarium/drug effects , Chitosan/chemistry , Chitosan/pharmacology , Nanocomposites/chemistry , Alternaria/drug effects , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Copper/chemistry , Copper/pharmacology , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Microbial Sensitivity Tests , Oxidative Stress/drug effects , X-Ray Diffraction
3.
Biochem Biophys Rep ; 37: 101610, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38155944

ABSTRACT

The fungal strain, Penicillium griseofulvum P29, isolated from a soil sample taken from Terra Nova Bay, Antarctica, was found to be a good producer of sialidase (P29). The present study was focused on the purification and structural characterization of the enzyme. P29 enzyme was purified using a Q-Sepharose column and fast performance liquid chromatography separation on a Mono Q column. The determined molecular mass of the purified enzyme of 40 kDa by SDS-PAGE and 39924.40 Da by matrix desorption/ionization mass spectrometry (MALDI-TOF/MS) analysis correlated well with the calculated mass (39903.75 kDa) from the amino acid sequence of the enzyme. P29 sialidase shows a temperature optimum of 37 °C and low-temperature stability, confirming its cold-active nature. The enzyme is more active towards α(2 â†’ 3) sialyl linkages than those containing α(2 â†’ 6) linkages. Based on the determined amino acid sequence and 3D structural modeling, a 3D model of P29 sialidase was presented, and the properties of the enzyme were explained. The conformational stability of the enzyme was followed by fluorescence spectroscopy, and the new enzyme was found to be conformationally stable in the neutral pH range of pH 6 to pH 9. In addition, the enzyme was more stable in an alkaline environment than in an acidic environment. The purified cold-active enzyme is the only sialidase produced and characterized from Antarctic fungi to date.

4.
Indian J Microbiol ; 63(4): 541-548, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38031622

ABSTRACT

Extremely cold habitats are a serious challenge for the existing there organisms. Inhabitants of these conditions are mostly microorganisms and lower mycetae. The mechanisms of microbial adaptation to extreme conditions are still unclear. Low temperatures cause significant physiological and biochemical changes in cells. Recently, there has been increasing interest in the relationship between low-temperature exposure and oxidative stress events, as well as the importance of antioxidant enzymes for survival in such conditions. The catalase is involved in the first line of the cells' antioxidant defense. Published information supports the concept of a key role for catalase in antioxidant defense against cold stress in a wide range of organisms isolated from the Antarctic. Data on representatives of microscopic fungi, however, are rarely found. There is scarce information on the characterization of catalase synthesized by adapted to cold stress organisms. Overall, this study aimed to observe the role of catalase in the survival strategy of filamentous fungi in extremely cold habitats and to identify the gene encoded catalase enzyme. Our results clearly showed that catalase is the main part of antioxidant enzyme defense in fungal cells against oxidative stress caused by low temperature exposure.

5.
J Basic Microbiol ; 61(9): 782-794, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34309887

ABSTRACT

Cold-active catalase (CAT) elicits great interest because of its vast prospective at the medical, commercial, and biotechnological levels. The study paper reports the production of cold-active CAT by the strain Penicillium griseofulvum P29 isolated from Antarctic soil. Improved enzyme production was achieved by optimization of medium and culture conditions. Maximum CAT was demonstrated under low glucose content (2%), 10% inoculum size, temperature 20°C, and dissolved oxygen concentration (DO) 40%. An effective laboratory technology based on changing the oxidative stress level through an increase of DO in the bioreactor was developed. The used strategy resulted in a 1.7- and 1.4-fold enhanced total enzyme activity and maximum enzyme productivity. The enzyme was purified and characterized. P. griseofulvum P29 CAT was most active at approximately 20°C and pH 6.0. Its thermostability was in the range between 5°C and 40°C.


Subject(s)
Biotechnology/methods , Catalase/genetics , Catalase/metabolism , Cold Temperature , Penicillium/genetics , Antarctic Regions , Catalase/analysis , Hydrogen-Ion Concentration , Oxidative Stress , Penicillium/enzymology , Penicillium/growth & development , Penicillium/isolation & purification , Temperature
6.
Folia Med (Plovdiv) ; 63(2): 189-196, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33932008

ABSTRACT

INTRODUCTION: The endogenous dipeptide L-tyrosine-L-arginine (kyotorphin, KTP) is found in brain structures related to the processing of information for nociception, the control of emotions, and memory formation. Besides the antinociceptive effect of KTP, it has a mild protective activity against the deleterious influence of the brain hypoperfusion and streptozotocin on the behavior and memory. AIM: We aimed to study the effects of the intracerebroventricular injection of effective antinociceptive doses of KTP on the motivational behavior, memory, and blood and hippocampal levels of the carbonylated proteins in healthy male adult Wistar rats. MATERIALS AND METHODS: We used a paw-pressure test for assessment of acute nociception, an open field test for assessment of exploration and habituation to a new environment, elevated plus maze test for the evaluation of anxiety-like behavior, and novel object recognition test for working memory. Carbonylated protein assay was used for the assessment of the oxidative impairment of the proteins. The results were analyzed by ANOVA. RESULTS: The present data showed that all single doses of KTP exerted an antinociceptive effect, but this effect was not observed after chronic administration. Only the highest dose of 100 µg was able to induce anxiolytic and motor inhibiting effects. None of the doses used showed effects on the recognition memory or the level of the carbonylated protein. CONCLUSION: Our results showed that KTP exerted its antinociceptive effect without affecting negatively the blood and brain carbonylated protein or basic behavioral parameters related to the exploration, motivation, and memory formation in healthy rats.


Subject(s)
Motivation , Analgesics/pharmacology , Animals , Anxiety/drug therapy , Arginine/pharmacology , Dipeptides/pharmacology , Endorphins , Male , Rats , Rats, Wistar , Tyrosine
7.
Fungal Biol ; 125(5): 412-425, 2021 05.
Article in English | MEDLINE | ID: mdl-33910682

ABSTRACT

Sialidases (neuraminidases, EC 3.2.1.18) are widely distributed in biological systems but there are only scarce data on its production by filamentous fungi. The aim of this study was to obtain information about sialidase distribution in filamentous fungi from non-clinical isolates, to determine availability of sialidase gene, and to select a perspective producer. A total of 113 fungal strains belonging to Ascomycota and Zygomycota compassing 21 genera and 51 species were screened. Among them, 77 strains (11 orders, 14 families and 16 genera) were able to synthesize sialidase. Present data showed a habitat-dependent variation of sialidase activity between species and within species, depending on location. Sialidase gene was identified in sialidase-positive and sialidase-negative strains. . Among three perspective strains, the best producer was chosen based on their sialidase production depending on type of cultivation, medium composition, and growth temperature. The selected P. griseofulvum Р29 was cultivated in 3L bioreactor at 20 °C on medium supplemented with 0.5% milk whey. The results demonstrated better growth and 2.3-fold higher maximum enzyme activity compared to the shaken flask cultures. Moreover, the early occurring maximum (48 h) is an important prerequisite for future up scaling of the process.


Subject(s)
Fungi , Neuraminidase , Humans , Neuraminidase/genetics
8.
Metab Brain Dis ; 35(3): 527-538, 2020 03.
Article in English | MEDLINE | ID: mdl-31997264

ABSTRACT

Diabetes mellitus type 2 (T2DM) is characterized by resistance of insulin receptors and/or inadequate insulin secretion resulting in metabolic and structural complications including vascular diseases, arterial hypertension and different behavioral alterations. We aimed to study the effects of the antihypertensive angiotensin AT1 receptor antagonist losartan on the T2DM-induced changes of exploratory behavior, anxiety, nociception and short term memory in normotensive Wistar and spontaneously hypertensive rats (SHRs). The experimental model of T2DM induced by a combination of high fat diet and streptozotocin, decreased exploratory activity and increased the level of carbonylated proteins in selected brain structures in both strains; as well it increased corticosterone level, pain threshold, anxiety-like behavior, and decline short term memory only in SHRs. Losartan treatment alleviated some of the T2DM- induced metabolic complications, abolished the T2DM-induced hypo activity, and normalized the corticosterone level, carbonylated proteins in brain, nociception and memory. Losartan did not exert effect on the anxiety behavior in both strains. We showed that T2DM exerted more pronounced negative effects on the rats with comorbid hypertension as compared to normotensive rats. Overall effects on the studied behavioral parameters are related to decreased exploration of the new environment, increased anxiety-like behavior, and decline in short-term memory. The systemic sub-chronic treatment with an angiotensin AT1 receptor antagonist losartan ameliorated most of these complications.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/administration & dosage , Brain/drug effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Exploratory Behavior/drug effects , Insulin Secretion/drug effects , Losartan/administration & dosage , Animals , Brain/metabolism , Corticosterone/blood , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Insulin Resistance , Memory/drug effects , Nociception/drug effects , Rats , Rats, Inbred SHR , Rats, Wistar
9.
Amino Acids ; 51(10-12): 1501-1513, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31520285

ABSTRACT

The established decrease in the level of endogenous kyotorphin (KTP) into the cerebrospinal fluid of patients with an advanced stage of Alzheimer's disease (AD) and the found neuroprotective activity of KTP suggested its participation in the pathophysiology of the disease. We aimed to study the effects of subchronic intracerebroventricular (ICV) treatment (14 days) with KTP on the behavioral, biochemical and histological changes in rats with streptozotocin (STZ-ICV)-induced model of sporadic AD (sAD). Three months after the administration of STZ-ICV, rats developed increased locomotor activity, decreased level of anxiety, impaired spatial and working memory. Histological data from the STZ-ICV group demonstrated decreased number of neurons in the CA1 and CA3 subfields of the hippocampus. The STZ-ICV group was characterized with a decrease of total protein content in the hippocampus and the prefrontal cortex as well as increased levels of the carbonylated proteins in the hippocampus. KTP treatment of STZ-ICV rats normalized anxiety level and regained object recognition memory. KTP abolished the protein loss in prefrontal cortex and decrease the neuronal loss in the CA3 subfield of the hippocampus. STZ-ICV rats, treated with KTP, did not show significant changes in the levels of the carbonylated proteins in specific brain structures or in motor activity and spatial memory compared to the saline-treated STZ-ICV group. Our data show a moderate and selective protective effect of a subchronic ICV administration of the dipeptide KTP on the pathological changes induced by an experimental model of sAD in rats.


Subject(s)
Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Disease Models, Animal , Endorphins/therapeutic use , Neuroprotective Agents/therapeutic use , Streptozocin/administration & dosage , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , Anxiety/prevention & control , Brain/drug effects , Brain/metabolism , Brain/pathology , Male , Motor Activity/drug effects , Rats , Rats, Wistar , Spatial Memory/drug effects , Treatment Outcome
10.
Eng Life Sci ; 18(9): 692-701, 2018 Sep.
Article in English | MEDLINE | ID: mdl-32624949

ABSTRACT

Because of the crucial role of ligninolytic enzymes in a variety of industrial processes, the demand for a new effective producer has been constantly increasing. Furthermore, information on enzyme synthesis by autochthonous fungal strains is very seldom found. Two fungal strains producing ligninolytic enzymes were isolated from Bulgarian forest soil. They were identified as being Trametes trogii and T. hirsuta. These two strains were assessed for their enzyme activities, laccase (Lac), lignin peroxidase (LiP) and Mn-dependent peroxidase (MnP) in culture filtrate depending on the temperature and the type of nutrient medium. T. trogii was selected as the better producer of ligninolytic enzymes. The production process was further improved by optimizing a number of parameters such as incubation time, type of cultivation, volume ratio of medium/air, inoculum size and the addition of inducers. The maximum activities of enzymes synthesized by T. trogii was detected as 11100 U/L for Lac, 2.5 U/L for LiP and 4.5 U/L for MnP after 14 days of incubation at 25°C under static conditions, volume ratio of medium/air 1:6, and 3 plugs as inoculum. Among the supplements tested, 5% glycerol increased Lac activity to a significant extent. The addition of 1% veratryl alcohol had a positive effect on MnP.

11.
Microbiology (Reading) ; 163(7): 1042-1051, 2017 07.
Article in English | MEDLINE | ID: mdl-28691665

ABSTRACT

Cold-induced oxidative stress during the aging of three Penicillium strains (two Antarctic and one from a temperate region) in stationary culture was documented and demonstrated a significant increase in the protein carbonyl content, the accumulation of glycogen and trehalose, and an increase in the activities of antioxidant enzymes (superoxide dismutase and catalase). The cell response to a temperature downshift depends on the degree of stress and the temperature characteristics of the strains. Our data give further support for the role of oxidative stress in the aging of fungi in stationary cultures. Comparing the present results for the stationary growth phase with our previous results for the exponential growth phase was informative concerning the relationship between the cold-stress response and age-related changes in the tested strains. Unlike the young cells, stationary-phase cultures demonstrated a more pronounced level of oxidative damage, as well as decreased antioxidant defence.


Subject(s)
Penicillium/growth & development , Antarctic Regions , Catalase/genetics , Catalase/metabolism , Cold Temperature , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glycogen/metabolism , Oxidative Stress , Penicillium/genetics , Penicillium/isolation & purification , Penicillium/metabolism , Protein Carbonylation , Soil Microbiology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Trehalose/metabolism
12.
Fungal Biol ; 120(5): 679-89, 2016 05.
Article in English | MEDLINE | ID: mdl-27109365

ABSTRACT

The Antarctic fungal strain Aspergillus glaucus 363 produces cold-active (CA) Cu/Zn-superoxide dismutase (SOD). The strain contains at least one gene encoding Cu/Zn-SOD that exhibited high homology with the corresponding gene of other Aspergillus species. To our knowledge, this is the first nucleotide sequence of a CA Cu/Zn-SOD gene in fungi. An effective laboratory technology for A. glaucus SOD production in 3 L bioreactors was developed on the basis of transient cold-shock treatment. The temperature downshift to 10 °C caused 1.4-fold increase of specific SOD activity compared to unstressed culture. Maximum enzyme productivity was 64 × 10(3) U kg(-1) h(-1). Two SOD isoenzymes (Cu/Zn-SODI and Cu/Zn-SODII) were purified to electrophoretic homogeneity. The specific activity of the major isoenzyme, Cu/Zn-SODII, after Q-Sepharose chromatography was 4000 U mg(-1). The molecular mass of SODI (38 159 Da) and of SODII (15 835 Da) was determined by electrospray quadropole time-of-flight (ESI-Q-TOF) mass spectrometry and dynamic light scattering (DLS). The presence of Cu and Zn were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). The N-terminal amino acid sequence of Cu/Zn-SODII revealed a high degree of structural homology with Cu/Zn-SOD from other fungi, including Aspergillus species.


Subject(s)
Aspergillus/enzymology , Cold Temperature , Superoxide Dismutase/isolation & purification , Superoxide Dismutase/metabolism , Antarctic Regions , Aspergillus/genetics , Aspergillus/isolation & purification , Aspergillus/radiation effects , Conserved Sequence , Copper/analysis , Mass Spectrometry , Molecular Weight , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics , Zinc/analysis
13.
Biotechnol Biotechnol Equip ; 28(5): 855-862, 2014 Sep 03.
Article in English | MEDLINE | ID: mdl-26019570

ABSTRACT

Despite the intensive research in the past decade on the microbial bioaccumulation of heavy metals, the significance of redox state for oxidative stress induction is not completely clarified. In the present study, we examined the effect of redox-active (copper and chromium) and redox-inactive (cadmium) metals on the changes in levels of oxidative stress biomarkers and antioxidant enzyme defence in Trichosporon cutaneum R57 cells. This filamentous yeast strain showed significant tolerance and bioaccumulation capability of heavy metals. Our findings indicated that the treatment by both redox-active and redox-inactive heavy metal induced oxidative stress events. Enhanced concentrations of Cu2+, Cr6+ and Cd2+ caused acceleration in the production of reactive oxygen species (ROS), increase in the level of oxidatively damaged proteins and accumulation of reserve carbohydrates (glycogen and trehalose). Cell response against heavy metal exposure also includes elevation in the activities of antioxidant enzymes, superoxide dismutase and catalase, which are key enzymes for directly scavenging of ROS. Despite the mentioned changes in the stress biomarkers, T. cutaneum did not show a significant growth diminution. Probably, activated antioxidant defence contributes to the yeast survival under conditions of heavy metal stress.

14.
World J Microbiol Biotechnol ; 30(5): 1661-8, 2014 May.
Article in English | MEDLINE | ID: mdl-24366816

ABSTRACT

The study focuses on the morphological and physiological cell responses to oxidative stress induced by high temperature treatment in the industrially relevant fungus Aspergillus niger 26. Temperatures above 30 °C lead to growth suppression and changes in morphological characteristics: decrease in the size of hyphal elements and increase in "active length" by switching from slightly branched long filaments to a multitude of branched forms containing active cytoplasm. Transmission electron microscopy of fungal cultures heated at 40 °C demonstrated abnormal wavy septation with reduced amount of chitin (as shown by WGA-gold labelling), intrahyphal hyphae development, disintegration of mitochondria and extensive autolysis. Temperature-dependent decrease in the total intracellular protein content and a sharp increase (six to tenfold) in oxidatively damaged proteins were also demonstrated. Elevated temperatures caused a two and threefold increase in catalase and superoxide dismutase activities, respectively.


Subject(s)
Aspergillus niger/growth & development , Aspergillus niger/ultrastructure , Fungal Proteins/metabolism , Oxidative Stress/physiology , Aspergillus niger/metabolism , Biomass , Catalase/metabolism , Hot Temperature , Hyphae/growth & development , Hyphae/ultrastructure , Microscopy, Electron, Transmission , Superoxide Dismutase/metabolism
15.
Can J Microbiol ; 58(12): 1335-43, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23210990

ABSTRACT

Humicola lutea 103 is a copper-tolerant fungal strain able to grow in the presence of 300 µg·mL(-1) Cu(2+) under submerged cultivation. To prevent the consequences of copper overload, microorganisms have evolved molecular mechanisms that regulate its uptake, intracellular traffic, storage, and efflux. In spite of this avoidance strategy, high heavy-metal concentrations caused distinct and widespread ultrastructural alterations in H. lutea. The mitochondria were the first and main target of the toxic action. The effect of copper on activities of the key enzymes (hexokinase, glucose-6-phosphate dehydrogenase, malate dehydrogenase, and isocitrate dehydrogenase) included in the 3 main metabolic pathways, glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle, was investigated. High metal concentrations exhibited a dramatic negative effect on hexokinase, while the other 3 enzymes showed a significant and dose-dependent stimulation. On the basis of the present and previous results we concluded that the copper-induced oxidative stress plays an important role in the fungal tolerance to high Cu (2+) concentrations.


Subject(s)
Ascomycota/enzymology , Ascomycota/ultrastructure , Copper/pharmacology , Oxidative Stress , Ascomycota/drug effects , Ascomycota/growth & development , Biomass , Citric Acid Cycle , Glucosephosphate Dehydrogenase/metabolism , Glycolysis , Hexokinase/metabolism , Hyphae/ultrastructure , Isocitrate Dehydrogenase/metabolism , Malate Dehydrogenase/metabolism , Microscopy, Electron , Pentose Phosphate Pathway
16.
Z Naturforsch C J Biosci ; 65(5-6): 419-28, 2010.
Article in English | MEDLINE | ID: mdl-20653246

ABSTRACT

The combined protective effect of a polyphenol-rich extract, isolated from Geranium sanguineum L. (PC), and a novel naturally glycosylated Cu/Zn-containing superoxide dismutase, produced from the fungal strain Humicula lutea 103 (HL-SOD), in the experimental influenza A virus infection (EIVI) in mice, induced with the virus A/Aichi/2/68 (H3N2), was investigated. The combined application of HL-SOD and PC in doses, which by themselves do not defend significantly mice in EIVI, resulted in a synergistically increased protection, determined on the basis of protective indices and amelioration of lung injury. Lung weights and consolidation as well as infectious lung virus titers were all decreased significantly parallel to the reduction of the mortality rates; lung indices were raised. The excessive production of reactive oxygen species (ROS) by alveolar macrophages (aMphi) as well as the elevated levels of the lung antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), induced by EIVI, were brought to normal. For comparative reasons the combined protective effect of PC and vitamin C was investigated. The obtained results support the combined use of antioxidants for the treatment of influenza virus infection and in general indicate the beneficial protective role of combinations of viral inhibitors of natural origin with diverse modes of action.


Subject(s)
Flavonoids/therapeutic use , Orthomyxoviridae Infections/drug therapy , Phenols/therapeutic use , Plant Extracts/therapeutic use , Plants, Medicinal , Respiratory Tract Infections/drug therapy , Superoxide Dismutase/pharmacology , Animals , Female , Geranium , Hydrogen Peroxide/metabolism , Influenza A virus , Male , Mice , Mice, Inbred ICR , Polyphenols
17.
Appl Biochem Biotechnol ; 159(2): 415-25, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19050834

ABSTRACT

The growth and intracellular protein content of lavender (Lavandula vera MM) cell suspension culture was followed along with some antioxidant defense system members-non-enzymatic (rosmarinic acid) and enzymatic [superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6)]. It was found that the media content and the cultivation mode strongly influenced the production of plant defense compounds as well as the ratio between non-enzymatic and enzymatic ones. The bioreactor culture contains about two times more rosmarinic acid, superoxide dismutase, and catalase compared to the shake-flask cultivation. These findings are discussed with respect to the relative stress levels and plant antioxidant orchestra system. It was concluded that investigated defense system components (enzymatic and non-enzymatic) were closely associated in a complex balance. The three isoenzyme forms of SOD (Cu/ZnSOD, FeSOD, and MnSOD) in the cells of Lavandula vera were revealed by polyacrylamide gel electrophoresis analysis, and the FeSOD isoform exhibited highest activity.


Subject(s)
Antioxidants/metabolism , Catalase/metabolism , Cell Culture Techniques/methods , Cinnamates/metabolism , Depsides/metabolism , Lavandula/metabolism , Superoxide Dismutase/metabolism , Cells, Cultured , Rosmarinic Acid
18.
Extremophiles ; 13(2): 273-81, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19089529

ABSTRACT

Although investigators have been studying the cold-shock response in a variety of organisms for the last two decades or more, comparatively little is known about the difference between antioxidant cell response to cold stress in Antarctic and temperate microorganisms. The change of environmental temperature, which is one of the most common stresses, could be crucial for their use in the biotechnological industry and in ecological research. We compared the effect of short-term temperature downshift on antioxidant cell response in Antarctic and temperate fungi belonging to the genus Penicillium. Our study showed that downshift from an optimal temperature to 15 degrees or 6 degrees C led to a cell response typical of oxidative stress: significant reduction of biomass production; increase in the levels of oxidative damaged proteins and accumulation of storage carbohydrates (glycogen and trehalose) in comparison to growth at optimal temperature. Cell response against cold stress includes also increase in the activities of SOD and CAT, which are key enzymes for directly scavenging reactive oxygen species. This response is more species-dependent than dependent on the degree of cold-shock. Antarctic psychrotolerant strain Penicillium olsonii p14 that is adapted to life in extremely cold conditions demonstrated enhanced tolerance to temperature downshift in comparison with both mesophilic strains (Antarctic Penicillium waksmanii m12 and temperate Penicillium sp. t35).


Subject(s)
Antioxidants/metabolism , Biotechnology/methods , Fungi/metabolism , Antarctic Regions , Antioxidants/chemistry , Carbon/chemistry , Cell-Free System , Cold Temperature , Glycogen/chemistry , Oxidative Stress/physiology , Superoxide Dismutase/metabolism , Temperature , Time Factors , Trehalose/chemistry
19.
Arch Microbiol ; 189(2): 121-30, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17805512

ABSTRACT

The present study aims to provide new information about the unusual location of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) in lower eukaryotes such as filamentous fungi. Humicola lutea, a high producer of SOD was used as a model system. Subcellular fractions [cytosol, mitochondrial matrix, and intermembrane space (IMS)] were isolated and tested for purity using activity measurements of typical marker enzymes. Evidence, based on electrophoretic mobility, sensitivity to KCN and H(2)O(2) and immunoblot analysis supports the existence of Cu/Zn-SOD in mitochondrial IMS, and the Mn-SOD in the matrix. Enzyme activity is almost equally partitioned between both the compartments, thus suggesting that the intermembrane space could be one of the major sites of exposure to superoxide anion radicals. The mitochondrial Cu/Zn-SOD was purified and compared with the previously published cytosolic enzyme. They have identical molecular mass, cyanide- and H(2)O(2)-sensitivity, N-terminal amino acid sequence, glycosylation sites and carbohydrate composition. The H. lutea mitochondrial Cu/Zn-SOD is the first identified naturally glycosylated enzyme, isolated from IMS. These findings suggest that the same Cu/Zn-SOD exists in both the mitochondrial IMS and cytosol.


Subject(s)
Ascomycota/chemistry , Ascomycota/enzymology , Mitochondria/chemistry , Mitochondria/enzymology , Mitochondrial Membranes/chemistry , Mitochondrial Membranes/enzymology , Superoxide Dismutase/analysis , Blotting, Western , Cell Fractionation , Enzyme Inhibitors/pharmacology , Glycosylation , Molecular Weight , Potassium Cyanide/pharmacology , Superoxide Dismutase/antagonists & inhibitors , Superoxide Dismutase/chemistry , Superoxide Dismutase/isolation & purification
20.
Mycol Res ; 110(Pt 11): 1347-54, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17070679

ABSTRACT

The effect of growth temperature (10, 15, 20, 25, and 30 degrees C) on the cell response was compared between two Antarctic Penicillium sp. strains (Penicillium sp. p14 and Penicillium sp. m12) and a European temperate strain, Penicillium sp. t35. According to the temperature profiles, Penicillium sp. p14 was identified as psychrophilic, while Penicillium sp. m12 and Penicillium sp. t35 as mesophilic fungi, respectively. The results demonstrated that the growth at low temperature does clearly induce oxidative stress events in all strains tested. Decreases in growth temperature below the optimal coincided with markedly enhanced protein carbonyl content, an indicator of oxidatively damaged proteins. Also, the cellular response to growth temperature in terms of reserve carbohydrate was determined. In the mesophilic strains there was essentially no enhancement of glycogen content. This was in contrast to the psychrophilic Penicillium sp. p14, which gradually accumulated glycogen in response to cold (10 degrees C) during the exponential phase. In addition, elevated endogenous levels of trehalose upon low-temperature stress were exhibited by all model microorganisms. Compared with temperate mesophilic Penicillium sp. t35, Antarctic strains (psychrophilic Penicillium sp. p14 and mesophilic Penicillium sp. m12) demonstrated a marked rise in activities of protective enzymes such as superoxide dismutase and catalase at decreasing temperatures. The results suggested that low-temperature resistance is partially associated with enhanced scavenging systems.


Subject(s)
Penicillium/growth & development , Temperature , Biomass , Catalase/metabolism , Glycogen/metabolism , Oxidative Stress , Penicillium/cytology , Penicillium/metabolism , Species Specificity , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...