Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Alzheimers Dement ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676929

ABSTRACT

INTRODUCTION: Increasing evidence suggests that metabolic impairments contribute to early Alzheimer's disease (AD) mechanisms and subsequent dementia. Signals in metabolic pathways conserved across species can facilitate translation. METHODS: We investigated differences in serum and brain metabolites between the early-onset 5XFAD and late-onset LOAD1 (APOE4.Trem2*R47H) mouse models of AD to C57BL/6J controls at 6 months of age. RESULTS: We identified sex differences for several classes of metabolites, such as glycerophospholipids, sphingolipids, and amino acids. Metabolic signatures were notably different between brain and serum in both mouse models. The 5XFAD mice exhibited stronger differences in brain metabolites, whereas LOAD1 mice showed more pronounced differences in serum. DISCUSSION: Several of our findings were consistent with results in humans, showing glycerophospholipids reduction in serum of apolipoprotein E (apoE) ε4 carriers and replicating the serum metabolic imprint of the APOE ε4 genotype. Our work thus represents a significant step toward translating metabolic dysregulation from model organisms to human AD. HIGHLIGHTS: This was a metabolomic assessment of two mouse models relevant to Alzheimer's disease. Mouse models exhibit broad sex-specific metabolic differences, similar to human study cohorts. The early-onset 5XFAD mouse model primarily alters brain metabolites while the late-onset LOAD1 model primarily changes serum metabolites. Apolipoprotein E (apoE) ε4 mice recapitulate glycerophospolipid signatures of human APOE ε4 carriers in both brain and serum.

2.
Sci Immunol ; 9(93): eadj4775, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489352

ABSTRACT

The gut microbiota promotes immune system development in early life, but the interactions between the gut metabolome and immune cells in the neonatal gut remain largely undefined. Here, we demonstrate that the neonatal gut is uniquely enriched with neurotransmitters, including serotonin, and that specific gut bacteria directly produce serotonin while down-regulating monoamine oxidase A to limit serotonin breakdown. We found that serotonin directly signals to T cells to increase intracellular indole-3-acetaldehdye and inhibit mTOR activation, thereby promoting the differentiation of regulatory T cells, both ex vivo and in vivo in the neonatal intestine. Oral gavage of serotonin into neonatal mice resulted in long-term T cell-mediated antigen-specific immune tolerance toward both dietary antigens and commensal bacteria. Together, our study has uncovered an important role for specific gut bacteria to increase serotonin availability in the neonatal gut and identified a function of gut serotonin in shaping T cell response to dietary antigens and commensal bacteria to promote immune tolerance in early life.


Subject(s)
Gastrointestinal Microbiome , Serotonin , Animals , Mice , Bacteria , Immune Tolerance , Antigens
3.
medRxiv ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38313266

ABSTRACT

Impaired glucose uptake in the brain is one of the earliest presymptomatic manifestations of Alzheimer's disease (AD). The absence of symptoms for extended periods of time suggests that compensatory metabolic mechanisms can provide resilience. Here, we introduce the concept of a systemic 'bioenergetic capacity' as the innate ability to maintain energy homeostasis under pathological conditions, potentially serving as such a compensatory mechanism. We argue that fasting blood acylcarnitine profiles provide an approximate peripheral measure for this capacity that mirrors bioenergetic dysregulation in the brain. Using unsupervised subgroup identification, we show that fasting serum acylcarnitine profiles of participants from the AD Neuroimaging Initiative yields bioenergetically distinct subgroups with significant differences in AD biomarker profiles and cognitive function. To assess the potential clinical relevance of this finding, we examined factors that may offer diagnostic and therapeutic opportunities. First, we identified a genotype affecting the bioenergetic capacity which was linked to succinylcarnitine metabolism and significantly modulated the rate of future cognitive decline. Second, a potentially modifiable influence of beta-oxidation efficiency seemed to decelerate bioenergetic aging and disease progression. Our findings, which are supported by data from more than 9,000 individuals, suggest that interventions tailored to enhance energetic health and to slow bioenergetic aging could mitigate the risk of symptomatic AD, especially in individuals with specific mitochondrial genotypes.

4.
Proc Natl Acad Sci U S A ; 121(8): e2317343121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38359293

ABSTRACT

Glucose and amino acid metabolism are critical for glioblastoma (GBM) growth, but little is known about the specific metabolic alterations in GBM that are targetable with FDA-approved compounds. To investigate tumor metabolism signatures unique to GBM, we interrogated The Cancer Genome Atlas for alterations in glucose and amino acid signatures in GBM relative to other human cancers and found that GBM exhibits the highest levels of cysteine and methionine pathway gene expression of 32 human cancers. Treatment of patient-derived GBM cells with the FDA-approved single cysteine compound N-acetylcysteine (NAC) reduced GBM cell growth and mitochondrial oxygen consumption, which was worsened by glucose starvation. Normal brain cells and other cancer cells showed no response to NAC. Mechanistic experiments revealed that cysteine compounds induce rapid mitochondrial H2O2 production and reductive stress in GBM cells, an effect blocked by oxidized glutathione, thioredoxin, and redox enzyme overexpression. From analysis of the clinical proteomic tumor analysis consortium (CPTAC) database, we found that GBM cells exhibit lower expression of mitochondrial redox enzymes than four other cancers whose proteomic data are available in CPTAC. Knockdown of mitochondrial thioredoxin-2 in lung cancer cells induced NAC susceptibility, indicating the importance of mitochondrial redox enzyme expression in mitigating reductive stress. Intraperitoneal treatment of mice bearing orthotopic GBM xenografts with a two-cysteine peptide induced H2O2 in brain tumors in vivo. These findings indicate that GBM is uniquely susceptible to NAC-driven reductive stress and could synergize with glucose-lowering treatments for GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Mice , Animals , Hydrogen Peroxide , Peroxides , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Proteomics , Acetylcysteine/pharmacology , Glucose , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics
5.
medRxiv ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38076824

ABSTRACT

Alzheimer's disease (AD) is influenced by a variety of modifiable risk factors, including a person's dietary habits. While the ketogenic diet (KD) holds promise in reducing metabolic risks and potentially affecting AD progression, only a few studies have explored KD's metabolic impact, especially on blood and cerebrospinal fluid (CSF). Our study involved participants at risk for AD, either cognitively normal or with mild cognitive impairment. The participants consumed both a modified Mediterranean-ketogenic diet (MMKD) and the American Heart Association diet (AHAD) for 6 weeks each, separated by a 6-week washout period. We employed nuclear magnetic resonance (NMR)-based metabolomics to profile serum and CSF and metagenomics profiling on fecal samples. While the AHAD induced no notable metabolic changes, MMKD led to significant alterations in both serum and CSF. These changes included improved modifiable risk factors, like increased HDL-C and reduced BMI, reversed serum metabolic disturbances linked to AD such as a microbiome-mediated increase in valine levels, and a reduction in systemic inflammation. Additionally, the MMKD was linked to increased amino acid levels in the CSF, a breakdown of branched-chain amino acids (BCAAs), and decreased valine levels. Importantly, we observed a strong correlation between metabolic changes in the CSF and serum, suggesting a systemic regulation of metabolism. Our findings highlight that MMKD can improve AD-related risk factors, reverse some metabolic disturbances associated with AD, and align metabolic changes across the blood-CSF barrier.

6.
EMBO Rep ; 24(12): e57339, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37929643

ABSTRACT

Breast adipose tissue is an important contributor to the obesity-breast cancer link. Extracellular vesicles (EVs) are nanosized particles containing selective cargo, such as miRNAs, that act locally or circulate to distant sites to modulate target cell functions. Here, we find that long-term education of breast cancer cells with EVs obtained from breast adipose tissue of women who are overweight or obese (O-EVs) results in increased proliferation. RNA-seq analysis of O-EV-educated cells demonstrates increased expression of genes involved in oxidative phosphorylation, such as ATP synthase and NADH: ubiquinone oxidoreductase. O-EVs increase respiratory complex protein expression, mitochondrial density, and mitochondrial respiration in tumor cells. The mitochondrial complex I inhibitor metformin reverses O-EV-induced cell proliferation. Several miRNAs-miR-155-5p, miR-10a-3p, and miR-30a-3p-which promote mitochondrial respiration and proliferation, are enriched in O-EVs relative to EVs from lean women. O-EV-induced proliferation and mitochondrial activity are associated with stimulation of the Akt/mTOR/P70S6K pathway, and are reversed upon silencing of P70S6K. This study reveals a new facet of the obesity-breast cancer link with human breast adipose tissue-derived EVs causing metabolic reprogramming of breast cancer cells.


Subject(s)
Breast Neoplasms , Extracellular Vesicles , MicroRNAs , Humans , Female , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Adipose Tissue/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Obesity/metabolism , Breast Neoplasms/metabolism , Proteins/metabolism , Extracellular Vesicles/metabolism
7.
Sci Data ; 10(1): 830, 2023 11 25.
Article in English | MEDLINE | ID: mdl-38007532

ABSTRACT

Prostate cancer is the second most common cancer in men and affects 1 in 9 men in the United States. Early screening for prostate cancer often involves monitoring levels of prostate-specific antigen (PSA) and performing digital rectal exams. However, a prostate biopsy is always required for definitive cancer diagnosis. The Early Detection Research Network (EDRN) is a consortium within the National Cancer Institute aimed at improving screening approaches and early detection of cancers. As part of this effort, the Weill Cornell EDRN Prostate Cancer has collected and biobanked specimens from men undergoing a prostate biopsy between 2008 and 2017. In this report, we describe blood metabolomics measurements for a subset of this population. The dataset includes detailed clinical and prospective records for 580 patients who underwent prostate biopsy, 287 of which were subsequentially diagnosed with prostate cancer, combined with profiling of 1,482 metabolites from plasma samples collected at the time of biopsy. We expect this dataset to provide a valuable resource for scientists investigating prostate cancer metabolism.


Subject(s)
Prostatic Neoplasms , Humans , Male , Biopsy , Prospective Studies , Prostate , Prostate-Specific Antigen , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology , United States
8.
medRxiv ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37546878

ABSTRACT

Metabolic dysregulation is a hallmark of neurodegenerative diseases, including Alzheimer's disease (AD) and progressive supranuclear palsy (PSP). While metabolic dysregulation is a common link between these two tauopathies, a comprehensive brain metabolic comparison of the diseases has not yet been performed. We analyzed 342 postmortem brain samples from the Mayo Clinic Brain Bank and examined 658 metabolites in the cerebellar cortex and the temporal cortex between the two tauopathies. Our findings indicate that both diseases display oxidative stress associated with lipid metabolism, mitochondrial dysfunction linked to lysine metabolism, and an indication of tau-induced polyamine stress response. However, specific to AD, we detected glutathione-related neuroinflammation, deregulations of enzymes tied to purines, and cognitive deficits associated with vitamin B. Taken together, our findings underscore vast alterations in the brain's metabolome, illuminating shared neurodegenerative pathways and disease-specific traits in AD and PSP.

9.
Nat Metab ; 5(6): 1029-1044, 2023 06.
Article in English | MEDLINE | ID: mdl-37337120

ABSTRACT

Tumour metabolism is controlled by coordinated changes in metabolite abundance and gene expression, but simultaneous quantification of metabolites and transcripts in primary tissue is rare. To overcome this limitation and to study gene-metabolite covariation in cancer, we assemble the Cancer Atlas of Metabolic Profiles of metabolomic and transcriptomic data from 988 tumour and control specimens spanning 11 cancer types in published and newly generated datasets. Meta-analysis of the Cancer Atlas of Metabolic Profiles reveals two classes of gene-metabolite covariation that transcend cancer types. The first corresponds to gene-metabolite pairs engaged in direct enzyme-substrate interactions, identifying putative genes controlling metabolite pool sizes. A second class of gene-metabolite covariation represents a small number of hub metabolites, including quinolinate and nicotinamide adenine dinucleotide, which correlate to many genes specifically expressed in immune cell populations. These results provide evidence that gene-metabolite covariation in cellularly heterogeneous tissue arises, in part, from both mechanistic interactions between genes and metabolites, and from remodelling of the bulk metabolome in specific immune microenvironments.


Subject(s)
Metabolomics , Neoplasms , Humans , Metabolomics/methods , Metabolome , Neoplasms/genetics , Gene Expression Profiling/methods , Transcriptome , Tumor Microenvironment
10.
bioRxiv ; 2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37066188

ABSTRACT

Cancer cells frequently undergo metabolic reprogramming as a mechanism of resistance against chemotherapeutic drugs. Metabolomic profiling provides a direct readout of metabolic changes and can thus be used to identify these tumor escape mechanisms. Here, we introduce piTracer, a computational tool that uses multi-scale molecular networks to identify potential combination therapies from pre- and post-treatment metabolomics data. We first demonstrate piTracer’s core ability to reconstruct cellular cascades by inspecting well-characterized molecular pathways and previously studied associations between genetic variants and metabolite levels. We then apply a new gene ranking algorithm on differential metabolomic profiles from human breast cancer cells after glutaminase inhibition. Four of the automatically identified gene targets were experimentally tested by simultaneous inhibition of the respective targets and glutaminase. Of these combination treatments, two were be confirmed to induce synthetic lethality in the cell line. In summary, piTracer integrates the molecular monitoring of escape mechanisms into comprehensive pathway networks to accelerate drug target identification. The tool is open source and can be accessed at https://github.com/krumsieklab/pitracer .

11.
JAMA Psychiatry ; 80(6): 597-609, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37074710

ABSTRACT

Importance: Metabolomics reflect the net effect of genetic and environmental influences and thus provide a comprehensive approach to evaluating the pathogenesis of complex diseases, such as depression. Objective: To identify the metabolic signatures of major depressive disorder (MDD), elucidate the direction of associations using mendelian randomization, and evaluate the interplay of the human gut microbiome and metabolome in the development of MDD. Design, Setting and Participants: This cohort study used data from participants in the UK Biobank cohort (n = 500 000; aged 37 to 73 years; recruited from 2006 to 2010) whose blood was profiled for metabolomics. Replication was sought in the PREDICT and BBMRI-NL studies. Publicly available summary statistics from a 2019 genome-wide association study of depression were used for the mendelian randomization (individuals with MDD = 59 851; control individuals = 113 154). Summary statistics for the metabolites were obtained from OpenGWAS in MRbase (n = 118 000). To evaluate the interplay of the metabolome and the gut microbiome in the pathogenesis of depression, metabolic signatures of the gut microbiome were obtained from a 2019 study performed in Dutch cohorts. Data were analyzed from March to December 2021. Main Outcomes and Measures: Outcomes were lifetime and recurrent MDD, with 249 metabolites profiled with nuclear magnetic resonance spectroscopy with the Nightingale platform. Results: The study included 6811 individuals with lifetime MDD compared with 51 446 control individuals and 4370 individuals with recurrent MDD compared with 62 508 control individuals. Individuals with lifetime MDD were younger (median [IQR] age, 56 [49-62] years vs 58 [51-64] years) and more often female (4447 [65%] vs 2364 [35%]) than control individuals. Metabolic signatures of MDD consisted of 124 metabolites spanning the energy and lipid metabolism pathways. Novel findings included 49 metabolites, including those involved in the tricarboxylic acid cycle (ie, citrate and pyruvate). Citrate was significantly decreased (ß [SE], -0.07 [0.02]; FDR = 4 × 10-04) and pyruvate was significantly increased (ß [SE], 0.04 [0.02]; FDR = 0.02) in individuals with MDD. Changes observed in these metabolites, particularly lipoproteins, were consistent with the differential composition of gut microbiota belonging to the order Clostridiales and the phyla Proteobacteria/Pseudomonadota and Bacteroidetes/Bacteroidota. Mendelian randomization suggested that fatty acids and intermediate and very large density lipoproteins changed in association with the disease process but high-density lipoproteins and the metabolites in the tricarboxylic acid cycle did not. Conclusions and Relevance: The study findings showed that energy metabolism was disturbed in individuals with MDD and that the interplay of the gut microbiome and blood metabolome may play a role in lipid metabolism in individuals with MDD.


Subject(s)
Depressive Disorder, Major , Gastrointestinal Microbiome , Humans , Female , Middle Aged , Gastrointestinal Microbiome/genetics , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Genome-Wide Association Study , Cohort Studies , Metabolome , Citrates/pharmacology , Pyruvates/pharmacology
12.
bioRxiv ; 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36798307

ABSTRACT

Breast adipose tissue is an important contributor to the obesity-breast cancer link. Dysregulated cell metabolism is now an accepted hallmark of cancer. Extracellular vesicles (EVs) are nanosized particles containing selective cargo, such as miRNAs, that act locally or circulate to distant sites to modulate target cell functions. Here, we found that long-term education of breast cancer cells (MCF7, T47D) with EVs from breast adipose tissue of women who are overweight or obese (O-EVs) leads to sustained increased proliferative potential. RNA-Seq of O-EV-educated cells demonstrates increased expression of genes, such as ATP synthase and NADH: ubiquinone oxidoreductase, involved in oxidative phosphorylation. O-EVs increase respiratory complex protein expression, mitochondrial density, and mitochondrial respiration in tumor cells. Mitochondrial complex I inhibitor, metformin, reverses O-EV-induced cell proliferation. Several miRNAs, miR-155-5p, miR-10a-3p, and miR-30a-3p, which promote mitochondrial respiration and proliferation, are enriched in O-EVs relative to EVs from lean women. O-EV-induced proliferation and mitochondrial activity are associated with stimulation of the Akt/mTOR/P70S6K pathway, and are reversed upon silencing of P70S6K. This study reveals a new facet of the obesity-breast cancer link with human breast adipose tissue-derived EVs causing the metabolic reprogramming of ER+ breast cancer cells.

13.
Metabolites ; 13(1)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36677052

ABSTRACT

High-dimensional omics datasets frequently contain missing data points, which typically occur due to concentrations below the limit of detection (LOD) of the profiling platform. The presence of such missing values significantly limits downstream statistical analysis and result interpretation. Two common techniques to deal with this issue include the removal of samples with missing values and imputation approaches that substitute the missing measurements with reasonable estimates. Both approaches, however, suffer from various shortcomings and pitfalls. In this paper, we present "rox", a novel statistical model for the analysis of omics data with missing values without the need for imputation. The model directly incorporates missing values as "low" concentrations into the calculation. We show the superiority of rox over common approaches on simulated data and on six metabolomics datasets. Fully leveraging the information contained in LOD-based missing values, rox provides a powerful tool for the statistical analysis of omics data.

14.
Mol Med ; 29(1): 13, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36703108

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS), a life-threatening condition during critical illness, is a common complication of COVID-19. It can originate from various disease etiologies, including severe infections, major injury, or inhalation of irritants. ARDS poses substantial clinical challenges due to a lack of etiology-specific therapies, multisystem involvement, and heterogeneous, poor patient outcomes. A molecular comparison of ARDS groups holds the potential to reveal common and distinct mechanisms underlying ARDS pathogenesis. METHODS: We performed a comparative analysis of urine-based metabolomics and proteomics profiles from COVID-19 ARDS patients (n = 42) and bacterial sepsis-induced ARDS patients (n = 17). To this end, we used two different approaches, first we compared the molecular omics profiles between ARDS groups, and second, we correlated clinical manifestations within each group with the omics profiles. RESULTS: The comparison of the two ARDS etiologies identified 150 metabolites and 70 proteins that were differentially abundant between the two groups. Based on these findings, we interrogated the interplay of cell adhesion/extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis through a multi-omic network approach. Moreover, we identified a proteomic signature associated with mortality in COVID-19 ARDS patients, which contained several proteins that had previously been implicated in clinical manifestations frequently linked with ARDS pathogenesis. CONCLUSION: In summary, our results provide evidence for significant molecular differences in ARDS patients from different etiologies and a potential synergy of extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis. The proteomic mortality signature should be further investigated in future studies to develop prediction models for COVID-19 patient outcomes.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Sepsis , Humans , COVID-19/complications , Proteomics , Multiomics , Respiratory Distress Syndrome/etiology , Sepsis/complications , Inflammation
15.
Pediatr Res ; 93(3): 625-632, 2023 02.
Article in English | MEDLINE | ID: mdl-35595912

ABSTRACT

OBJECTIVE: To demonstrate and validate the improvement of current risk stratification for bronchopulmonary dysplasia (BPD) early after birth by plasma protein markers (sialic acid-binding Ig-like lectin 14 (SIGLEC-14), basal cell adhesion molecule (BCAM), angiopoietin-like 3 protein (ANGPTL-3)) in extremely premature infants. METHODS AND RESULTS: Proteome screening in first-week-of-life plasma samples of n = 52 preterm infants <32 weeks gestational age (GA) on two proteomic platforms (SomaLogic®, Olink-Proteomics®) confirmed three biomarkers with significant predictive power: BCAM, SIGLEC-14, and ANGPTL-3. We demonstrate high sensitivity (0.92) and specificity (0.86) under consideration of GA, show the proteins' critical contribution to the predictive power of known clinical risk factors, e.g., birth weight and GA, and predicted the duration of mechanical ventilation, oxygen supplementation, as well as neonatal intensive care stay. We confirmed significant predictive power for BPD cases when switching to a clinically applicable method (enzyme-linked immunosorbent assay) in an independent sample set (n = 25, p < 0.001) and demonstrated disease specificity in different cohorts of neonatal and adult lung disease. CONCLUSION: While successfully addressing typical challenges of clinical biomarker studies, we demonstrated the potential of BCAM, SIGLEC-14, and ANGPTL-3 to inform future clinical decision making in the preterm infant at risk for BPD. TRIAL REGISTRATION: Deutsches Register Klinische Studien (DRKS) No. 00004600; https://www.drks.de . IMPACT: The urgent need for biomarkers that enable early decision making and personalized monitoring strategies in preterm infants with BPD is challenged by targeted marker analyses, cohort size, and disease heterogeneity. We demonstrate the potential of the plasma proteins BCAM, SIGLEC-14, and ANGPTL-3 to identify infants with BPD early after birth while improving the predictive power of clinical variables, confirming the robustness toward proteome assays and proving disease specificity. Our comprehensive analysis enables a phase-III clinical trial that allows full implementation of the biomarkers into clinical routine to enable early risk stratification in preterms with BPD.


Subject(s)
Bronchopulmonary Dysplasia , Infant , Infant, Newborn , Humans , Bronchopulmonary Dysplasia/prevention & control , Proteome , Proteomics , Gestational Age , Infant, Extremely Premature , Biomarkers
16.
bioRxiv ; 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38187571

ABSTRACT

INTRODUCTION: Increasing evidence suggests that metabolic impairments contribute to early Alzheimer's disease (AD) mechanisms and subsequent dementia. Signals in metabolic pathways conserved across species provides a promising entry point for translation. METHODS: We investigated differences of serum and brain metabolites between the early-onset 5XFAD and late-onset LOAD1 (APOE4.Trem2*R47H) mouse models of AD to C57BL/6J controls at six months of age. RESULTS: We identified sex differences for several classes of metabolites, such as glycerophospholipids, sphingolipids, and amino acids. Metabolic signatures were notably different between brain and serum in both mouse models. The 5XFAD mice exhibited stronger differences in brain metabolites, whereas LOAD1 mice showed more pronounced differences in serum. DISCUSSION: Several of our findings were consistent with results in humans, showing glycerophospholipids reduction in serum of APOE4 carriers and replicating the serum metabolic imprint of the APOE4 genotype. Our work thus represents a significant step towards translating metabolic dysregulation from model organisms to human AD.

17.
Nutrients ; 14(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36235563

ABSTRACT

Very preterm infants are at high risk for suboptimal nutrition in the first weeks of life leading to insufficient weight gain and complications arising from metabolic imbalances such as insufficient bone mineral accretion. We investigated the use of a novel set of standardized parenteral nutrition (PN; MUC PREPARE) solutions regarding improving nutritional intake, accelerating termination of parenteral feeding, and positively affecting growth in comparison to individually prescribed and compounded PN solutions. We studied the effect of MUC PREPARE on macro- and micronutrient intake, metabolism, and growth in 58 very preterm infants and compared results to a historic reference group of 58 very preterm infants matched for clinical characteristics. Infants receiving MUC PREPARE demonstrated improved macro- and micronutrient intake resulting in balanced electrolyte levels and stable metabolomic profiles. Subsequently, improved energy supply was associated with up to 1.5 weeks earlier termination of parenteral feeding, while simultaneously reaching up to 1.9 times higher weight gain at day 28 in extremely immature infants (<27 GA weeks) as well as overall improved growth at 2 years of age for all infants. The use of the new standardized PN solution MUC PREPARE improved nutritional supply and short- and long-term growth and reduced PN duration in very preterm infants and is considered a superior therapeutic strategy.


Subject(s)
Infant, Premature, Diseases , Parenteral Nutrition Solutions , Electrolytes , Female , Fetal Growth Retardation , Humans , Infant , Infant, Newborn , Infant, Premature , Micronutrients , Weight Gain
18.
Am J Pathol ; 192(9): 1337-1338, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36064256
19.
Cancer Prev Res (Phila) ; 15(12): 803-814, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36049217

ABSTRACT

Bacteria are believed to play an important role in intestinal tumorigenesis and contribute to both gut luminal and circulating metabolites. Celecoxib, a selective cyclooxygenase-2 inhibitor, alters gut bacteria and metabolites in association with suppressing the development of intestinal polyps in mice. The current study sought to evaluate whether celecoxib exerts its chemopreventive effects, in part, through intestinal bacteria and metabolomic alterations. Using ApcMin/+ mice, we demonstrated that treatment with broad-spectrum antibiotics (ABx) reduced abundance of gut bacteria and attenuated the ability of celecoxib to suppress intestinal tumorigenesis. Use of ABx also impaired celecoxib's ability to shift microbial populations and gut luminal and circulating metabolites. Treatment with ABx alone markedly reduced tumor number and size in ApcMin/+ mice, in conjunction with profoundly altering the metabolite profiles of the intestinal lumen and blood. Many of the metabolite changes in the gut and circulation overlapped and included shifts in microbially derived metabolites. To complement these findings in mice, we evaluated the effects of ABx on circulating metabolites in patients with colon cancer. This showed that ABx treatment led to a shift in blood metabolites, including several that were of bacterial origin. Importantly, changes in metabolites in patients given ABx overlapped with alterations found in mice that also received ABx. Taken together, these findings suggest a potential role for bacterial metabolites in mediating both the chemopreventive effects of celecoxib and intestinal tumor growth. PREVENTION RELEVANCE: This study demonstrates novel mechanisms by which chemopreventive agents exert their effects and gut microbiota impact intestinal tumor development. These findings have the potential to lead to improved cancer prevention strategies by modulating microbes and their metabolites.


Subject(s)
Anticarcinogenic Agents , Gastrointestinal Microbiome , Mice , Animals , Celecoxib/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Metabolome , Anti-Bacterial Agents/pharmacology , Anticarcinogenic Agents/pharmacology , Bacteria , Carcinogenesis
20.
PLoS Pathog ; 18(9): e1010819, 2022 09.
Article in English | MEDLINE | ID: mdl-36121875

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS), a life-threatening condition characterized by hypoxemia and poor lung compliance, is associated with high mortality. ARDS induced by COVID-19 has similar clinical presentations and pathological manifestations as non-COVID-19 ARDS. However, COVID-19 ARDS is associated with a more protracted inflammatory respiratory failure compared to traditional ARDS. Therefore, a comprehensive molecular comparison of ARDS of different etiologies groups may pave the way for more specific clinical interventions. METHODS AND FINDINGS: In this study, we compared COVID-19 ARDS (n = 43) and bacterial sepsis-induced (non-COVID-19) ARDS (n = 24) using multi-omic plasma profiles covering 663 metabolites, 1,051 lipids, and 266 proteins. To address both between- and within- ARDS group variabilities we followed two approaches. First, we identified 706 molecules differently abundant between the two ARDS etiologies, revealing more than 40 biological processes differently regulated between the two groups. From these processes, we assembled a cascade of therapeutically relevant pathways downstream of sphingosine metabolism. The analysis suggests a possible overactivation of arginine metabolism involved in long-term sequelae of ARDS and highlights the potential of JAK inhibitors to improve outcomes in bacterial sepsis-induced ARDS. The second part of our study involved the comparison of the two ARDS groups with respect to clinical manifestations. Using a data-driven multi-omic network, we identified signatures of acute kidney injury (AKI) and thrombocytosis within each ARDS group. The AKI-associated network implicated mitochondrial dysregulation which might lead to post-ARDS renal-sequalae. The thrombocytosis-associated network hinted at a synergy between prothrombotic processes, namely IL-17, MAPK, TNF signaling pathways, and cell adhesion molecules. Thus, we speculate that combination therapy targeting two or more of these processes may ameliorate thrombocytosis-mediated hypercoagulation. CONCLUSION: We present a first comprehensive molecular characterization of differences between two ARDS etiologies-COVID-19 and bacterial sepsis. Further investigation into the identified pathways will lead to a better understanding of the pathophysiological processes, potentially enabling novel therapeutic interventions.


Subject(s)
Acute Kidney Injury , COVID-19 , Janus Kinase Inhibitors , Respiratory Distress Syndrome , Sepsis , Thrombocytosis , Arginine , COVID-19/complications , Humans , Interleukin-17 , Lipids , Respiratory Distress Syndrome/etiology , Sepsis/complications , Sphingosine
SELECTION OF CITATIONS
SEARCH DETAIL
...