Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
J Biomol Struct Dyn ; 39(15): 5799-5803, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32627715

ABSTRACT

In the present study, we explored phytochemical constituents of Tinospora cordifolia in terms of its binding affinity targeting the active site pocket of the main protease (3CL pro) of SARS-CoV-2 using molecular docking study and assessed the stability of top docking complex of tinosponone and 3CL pro using molecular dynamics simulations with GROMACS 2020.2 version. Out of 11 curated screened compounds, we found the significant docking score for tinosponone, xanosporic acid, cardiofolioside B, tembetarine and berberine in Tinospora cordifolia. Based on the findings of the docking study, it was confirmed that tinosponone is the potent inhibitor of main protease of SARS-CoV-2 with the best binding affinity of -7.7 kcal/mol. Further, ADME along with toxicity analysis was studied to predict the pharmacokinetics and drug-likeness properties of five top hits compounds. The molecular dynamics simulation analysis confirmed the stability of tinosponone and 3CL pro complex with a random mean square deviation (RMSD) value of 0.1 nm. The computer-aided drug design approach proved that the compound tinosponone from T. cordifolia is a potent inhibitor of 3CL main protease of SARS-CoV-2. Further, the in vitro and in vivo-based testing will be required to confirm its inhibitory effect on SARS-CoV-2.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Tinospora , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals , SARS-CoV-2
2.
J Biomol Struct Dyn ; 39(10): 3793-3801, 2021 07.
Article in English | MEDLINE | ID: mdl-32419646

ABSTRACT

The best therapeutic strategy to find an effective vaccine against SARS-CoV-2 is to explore the target structural protein. In the present study, a novel multi-epitope vaccine is designed using in silico tools that potentially trigger both CD4 and CD8 T-cell immune responses against the novel Coronavirus. The vaccine candidate was designed using B and T-cell epitopes that can act as an immunogen and elicits immune response in the host system. NCBI was used for the retrieval of surface spike glycoprotein, of novel corona virus (SARS-CoV-2) strains. VaxiJen server screens the most important immunogen of all the proteins and IEDB server gives the prediction and analysis of B and T cell epitopes. Final vaccine construct was designed in silico composed of 425 amino acids including the 50S ribosomal protein adjuvant and the construct was computationally validated in terms of antigenicity, allergenicity and stability on considering all critical parameters into consideration. The results subjected to the modeling and docking studies of vaccine were validated. Molecular docking study revealed the protein-protein binding interactions between the vaccine construct and TLR-3 immune receptor. The MD simulations confirmed stability of the binding pose. The immune simulation results showed significant response for immune cells. The findings of the study confirmed that the final vaccine construct of chimeric peptide could able to enhance the immune response against nCoV-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , COVID-19/prevention & control , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit
3.
Sci Rep ; 10(1): 14611, 2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32884038

ABSTRACT

Humidity monitoring has become extremely vital in various technological fields such as environment control, biomedical engineering, and so on. Therefore, a substantial interest lies in the development of fast and highly sensitive devices with high figures of merit. Self-powered and ultrasensitive humidity sensors based on SnS2 nanofilms of different film thicknesses have been demonstrated in this work. The sensing behavior has been investigated in the relative humidity (RH) range of 2-99%. The observed results reveal a remarkable response and ultrafast detection even with zero applied bias (self-powered mode), with response and recovery times of ~ 10 and ~ 0.7 s, respectively. The self-powered behavior has been attributed to the inhomogeneities and the asymmetry in the contact electrodes. The highest sensitivity of ~ 5.64 × 106% can be achieved at an applied bias of 5 V. This approach of fabricating such highly responsive, self-powered and ultrafast sensors with simple device architectures will be useful for designing futuristic sensing devices.

4.
Inform Med Unlocked ; 19: 100345, 2020.
Article in English | MEDLINE | ID: mdl-32395606

ABSTRACT

The aim of this study was to develop an appropriate anti-viral drug against the SARS-CoV-2 virus. An immediately qualifying strategy would be to use existing powerful drugs from various virus treatments. The strategy in virtual screening of antiviral databases for possible therapeutic effect would be to identify promising drug molecules, as there is currently no vaccine or treatment approved against COVID-19. Targeting the main protease (pdb id: 6LU7) is gaining importance in anti-CoV drug design. In this conceptual context, an attempt has been made to suggest an in silico computational relationship between US-FDA approved drugs, plant-derived natural drugs, and Coronavirus main protease (6LU7) protein. The evaluation of results was made based on Glide (Schrödinger) dock score. Out of 62 screened compounds, the best docking scores with the targets were found for compounds: lopinavir, amodiaquine, and theaflavin digallate (TFDG). Molecular dynamic (MD) simulation study was also performed for 20 ns to confirm the stability behaviour of the main protease and inhibitor complexes. The MD simulation study validated the stability of three compounds in the protein binding pocket as potent binders.

5.
3 Biotech ; 9(8): 306, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31355115

ABSTRACT

The bacteria residing in the gut environment do play a pivotal role in metabolic activities of the host. The metabolites produced by these bacteria affect the physiology and health of the host. The gut bacteria are exposed to environmental conditions where multiple factors such as lifestyle, stress, antibiotics, host genetics and infections have an influence on them. In case of pathogenesis of a disease, the gut bacterial composition is altered which leads to a diseased state. This stage is due to colonization of bacterial pathogens in the gut environment. The pathological condition can be alleviated by administering probiotic strains into the gut environment. The probiotic strains produce therapeutic molecules such as amino acids, vitamins, bacteriocins, enzymes, immunomodulatory compounds and short-chain fatty acids. This review discusses recent evidences of the impact of bioactive molecules produced by probiotic bacteria and their mechanism of action in the gut environment to maintain homeostasis and health of the host without any effect on beneficial bacteria sharing the same niche. In addition, the manufacturing challenges of probiotic products for various applications are discussed here.

6.
Nanotechnology ; 30(31): 314001, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-30889560

ABSTRACT

We report a MoS2/GaN heterojunction-based gas sensor by depositing MoS2 over a GaN substrate via a highly controllable and scalable sputtering technique coupled with a post sulfurization process in a sulfur-rich environment. The microscopic and spectroscopic measurements expose the presence of highly crystalline and homogenous few atomic layer MoS2 on top of molecular beam epitaxially grown GaN film. Upon hydrogen exposure, the molecular adsorption tuned the barrier height at the MoS2/GaN interface under the reverse biased condition, thus resulting in high sensitivity. Our results reveal that temperature strongly affects the sensitivity of the device and it increases from 21% to 157% for 1% hydrogen with an increase in temperature (25-150 °C). For a deeper understanding of carrier dynamics at the heterointerface, we visualized the band alignment across the MoS2/GaN heterojunction having valence band and conduction band offset values of 1.75 and 0.28 eV. The sensing mechanism was demonstrated based on an energy band diagram at the MoS2/GaN interface in the presence and absence of hydrogen exposure. The proposed methodology can be readily applied to other combinations of heterostructures for sensing different gas analytes.

7.
ACS Appl Mater Interfaces ; 11(10): 10418-10425, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30786709

ABSTRACT

A self-powered, broad band and ultrafast photodetector based on n+-InGaN/AlN/n-Si(111) heterostructure is demonstrated. Si-doped (n+ type) InGaN epilayer was grown by plasma-assisted molecular beam epitaxy on a 100 nm thick AlN template on an n-type Si(111) substrate. The n+-InGaN/AlN/n-Si(111) devices exhibit excellent self-powered photoresponse under UV-visible (300-800 nm) light illumination. The maximum response of this self-powered photodetector is observed at 580 nm for low-intensity irradiance (0.1 mW/cm2), owing to the deep donor states present near the InGaN/AlN interface. It shows a responsivity of 9.64 A/W with rise and fall times of 19.9 and 21.4 µs, respectively. A relation between the open circuit voltage and the responsivity has been realized.

8.
Nanotechnology ; 30(22): 224001, 2019 May 31.
Article in English | MEDLINE | ID: mdl-30699385

ABSTRACT

Here, we demonstrate improved NO2 gas sensing properties based on reduced graphene oxide (rGO) decorated V2O5 thin film. Excluding the DC sputtering grown V2O5 thin film, rGO was spread over V2O5 thin film by the drop cast method. The formation of several p-n heterojunctions was greatly affected by the current-voltage relation of the rGO-decorated V2O5 thin film due to the p-type and n-type nature of rGO and V2O5, respectively. Initially with rGO decoration on V2O5 thin film, current decreased in comparison to the pristine V2O5 thin film, whereas depositing rGO film on a glass substrate drastically increased current. Among all sensors, only the rGO-decorated V2O5 sensor revealed a maximum NO2 gas sensing response for 100 ppm at 150 °C, and it achieved an approximately 61% higher response than the V2O5 sensor. The elaborate mechanism for an extremely high sensing response is attributed to the formation and modulation of p-n heterojunctions at the interface of rGO and V2O5. In addition, the presence of active sites like oxygenous functional groups on the rGO surface enhanced the sensing response. On that account, sensors based on rGO-decorated V2O5 thin film are highly suitable for the purpose of NO2 gas sensing. They enable the timely detection of the gas, further protecting the ecosystem from its harmful effects.

10.
Rev Sci Instrum ; 89(9): 096102, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30278693

ABSTRACT

Here, we report a simple technique that uses mesoporous SnO2 to monitor the water quality and degrade the hazardous organic pollutants simultaneously. The technique generates hydroxyl radicals and a voltage that is hindered by the presence of hazardous organic pollutants. Pollutant as low as 1 ppb concentration level can easily be detected. The developed system not only monitors the water quality but also is capable of degrading hazardous dyes (organic pollutants) through its self-power, not relying on any external stimuli such as light, heat, radiation, and current. A simple digital laboratory multimeter is shown to be useful for the overall study. Overall, the study indicates that spectrophotometer generally used to monitor the dye concentration can be avoided.

11.
ACS Appl Mater Interfaces ; 10(30): 25285-25294, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30035528

ABSTRACT

Recently, extensive attention has been given to developing an active and durable metal-free economical sensor and catalyst. Graphene oxide (GO)-based sensors and catalysts have been considered as a promising candidate in current material science research. However, the sensing and catalytic properties of GO also need to be further improved to satisfy the specific applications, such as gas detection in harsh environments, medical diagnosis based on human breath, blood glucose detection, catalytic activity, and so forth. Therefore, the effect of nitrogen in GO on the performance of glucose and ammonia sensing, and catalytic activity has been investigated. Herein, we propose a practical, high-sensitive sensor and catalyst based on high-quality defect N-enriched GO. One-step, low-cost solvothermal synthesis of N-enriched GO has been exploited for the development of high-performance sensors and excellent catalyst at room temperature. The resultant N-enriched GO (N8GO) has been studied as a promising sensing material for ammonia, glucose, and para-nitrophenol (PNP) reduction. The prevalent outstanding sensing and catalytic performance may be due to the synergistic effect of nitrogen. A probable mechanism for sensing and catalytic reduction of PNP using N8GO has been proposed.


Subject(s)
Graphite/chemistry , Ammonia , Glucose , Nitrophenols
12.
ACS Appl Mater Interfaces ; 10(19): 16918-16923, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29707943

ABSTRACT

Nonpolar a-plane GaN epitaxial films were grown on an r-plane sapphire using the plasma-assisted molecular beam epitaxy system, with various nitrogen plasma power conditions. The crystallinity of the films was characterized by high-resolution X-ray diffraction and reciprocal space mapping. Using the X-ray "rocking curve-phi scan", [0002], [1-100], and [1-102] azimuth angles were identified, and interdigitated electrodes along these directions were fabricated to evaluate the direction-dependent UV photoresponses. UV responsivity ( R) and internal gain ( G) were found to be dependent on the azimuth angle and in the order of [0002] > [1-102] > [1-100], which has been attributed to the enhanced crystallinity and lowest defect density along [0002] azimuth. The temporal response was very stable irrespective of growth conditions and azimuth angles. Importantly, response time, responsivity, and internal gain were 210 ms, 1.88 A W-1, and 648.9%, respectively, even at a bias as low as 1 V. The results were validated using the Silvaco Atlas device simulator, and experimental observations were consistent with simulated results. Overall, the photoresponse is dependent on azimuth angles and requires further optimization, especially for materials with in-plane crystal anisotropy.

13.
J Colloid Interface Sci ; 514: 117-121, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29248813

ABSTRACT

Sodium-ion thin-film micro-batteries form a niche sector of energy storage devices. Sodium titanate, Na2Ti6O13 (NTO) thin films were deposited by pulsed laser deposition (PLD) using solid-state synthesized polycrystalline Na2Ti6O13 compound. The phase-purity and crystallinity of NTO in bulk and thin-film forms were confirmed by Rietveld refinement. Electron microscopy and atomic force microscopy revealed the formation of uniform ∼100 nm thin film with roughness of ∼4 nm consisting of homogeneous nanoscale grains. These PLD-deposited NTO thin-films, when tested in Na-half cell architecture, delivered a near theoretical reversible capacity close to 42 mA h g-1 involving Ti4+/Ti3+ redox activity along with good cycling stability and rate kinetics. Na2Ti6O13 can work as an efficient and safe anode in designing sodium-ion thin-film micro-batteries.

14.
Phys Rev Lett ; 119(22): 226802, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29286803

ABSTRACT

We present the first observation of dynamically modulated quantum phase transition between two distinct charge density wave (CDW) phases in two-dimensional 2H-NbSe_{2}. There is recent spectroscopic evidence for the presence of these two quantum phases, but its evidence in bulk measurements remained elusive. We studied suspended, ultrathin 2H-NbSe_{2} devices fabricated on piezoelectric substrates-with tunable flakes thickness, disorder level, and strain. We find a surprising evolution of the conductance fluctuation spectra across the CDW temperature: the conductance fluctuates between two precise values, separated by a quantum of conductance. These quantized fluctuations disappear for disordered and on-substrate devices. With the help of mean-field calculations, these observations can be explained as to arise from dynamical phase transition between the two CDW states. To affirm this idea, we vary the lateral strain across the device via piezoelectric medium and map out the phase diagram near the quantum critical point. The results resolve a long-standing mystery of the anomalously large spectroscopic gap in NbSe_{2}.

15.
ACS Appl Mater Interfaces ; 9(47): 41428-41434, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29115829

ABSTRACT

Highly porous materials, with large surface area and accessible space, variable chemical compositions, and porosity at different length scales, have captivated the attention of researchers in recent years as an important family of functional materials. Here, we report a novel approach to grow porous metal oxides (PMOs) by sequential elemental dealloying in which a highly mobile element gets dealloyed first under the thermal treatment (annealing) and facilitates the formation of PMOs. Subsequently, a chemiresistive sensor based on porous SnO2 was fabricated for humidity sensing at room temperature which shows a high sensitivity of 348 in a fully humid [>99% relative humidity (RH)] atmosphere with an accuracy of 1% RH change. In addition, the sensor is highly durable and reproducible. Eventually, the chemiresistive sensor has been exploited for electronic listening toward speaking, whistling, and breath monitoring. Overall, the results advocate the fabrication of PMOs and the development of resistive humidity sensors for electronic listening as well as for biomedical applications.

16.
3 Biotech ; 7(3): 186, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28664372

ABSTRACT

Modeling and optimization were performed to enhance production of lactase through submerged fermentation by Bacillus subtilis VUVD001 using artificial neural networks (ANN) and response surface methodology (RSM). The effect of process parameters namely temperature (°C), pH, and incubation time (h) and their combinational interactions on production was studied in shake flask culture by Box-Behnken design. The model was validated by conducting an experiment at optimized process variables which gave the maximum lactase activity of 91.32 U/ml. Compared to traditional activity, 3.48-folds improved production was obtained after RSM optimization. This study clearly shows that both RSM and ANN models provided desired predictions. However, compared with RSM (R 2 = 0.9496), the ANN model (R 2 = 0.99456) gave a better prediction for the production of lactase.

17.
J Nanosci Nanotechnol ; 17(1): 413-19, 2017 01.
Article in English | MEDLINE | ID: mdl-29624037

ABSTRACT

We report the synthesis of Cu(2)SnS(3) nanostructures using solvothermal technique and the study of its visible and infrared (IR) photoresponse under different illumination intensities. The CTS nano-crystals were found to have tetragonal crystal structure using X-ray Diffraction (XRD). Both flower and sphere shaped structures of around 1.5 µm were obtained as seen using scanning electron microscopy (SEM). Transmission electron microscopy (TEM) was used to study the crystalline nature as well as the different planes present in the crystal. The band gap of the obtained crystals was found to be 1.4 eV using optical studies. The visible photocurrent increased from 0.25 µA at dark to 0.42 µA at 1.05 suns and 1 V applied bias. The sensitivity increased from 1.25 at 0.88 suns to 1.68 at 1.05 suns. The IR photocurrent increased from 0.13 µA at dark to 0.66 µA at 477.7 mWcm(−2). The device exhibited an increase in the sensitivity, responsivity, external quantum efficiency and specific detectivity from 1.23, 0.10 mA/W, 0.016% and 5.02 × 10(8) Jones respectively at 127.4 mWcm(−2 ) to 4.95, 0.46 mA/W, 0.071% and 2.22×10(9) Jones respectively at 477.7 mWcm(−2). The time response of the photocurrent was measured over different ON-OFF cycles and the cyclic stability of the device was verified.

18.
J Nanosci Nanotechnol ; 17(2): 1538-542, 2017 Feb.
Article in English | MEDLINE | ID: mdl-29688676

ABSTRACT

We, herein, report an eco-friendly low temperature route for the gram-scale synthesis of copper indium selenide nanoparticles. We have also shown the possibility of using CuInSe2 nanoparticles in infrared photodetection by maneuvering the photoconductive property. We rationalize the long-lived trap states to be the cause for the observed photoconductive gain. It is worth noting that the photoresponse time of the device was found to be faster than 0.1 s.

19.
Environ Sci Pollut Res Int ; 24(10): 9079-9088, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27164879

ABSTRACT

The objective of this study is to evaluate the current status of heavy metal concentrations in constructed wetland, Shaoguan (Guangdong, China). Sediments, three wetland plants (Typha latifolia, Phragmites australis, and Cyperus malaccensis), and six freshwater fish species [Carassius auratus (Goldfish), Cirrhinus molitorella (Mud carp), Ctenopharyngodon idellus (Grass carp), Cyprinus carpio (Wild common carp), Nicholsicypris normalis (Mandarin fish), Sarcocheilichthys kiangsiensis (Minnows)] in a constructed wetland in Shaoguan were collected and analyzed for their heavy metal compositions. Levels of Pb, Zn, Cu, and Cd in sediments exceeded approximately 532, 285, 11, and 66 times of the Dutch Intervention value. From the current study, the concentrations of Pb and Zn in three plants were generally high, especially in root tissues. For fish, concentrations of all studied metals in whole body of N. mormalis were the highest among all the fishes investigated (Pb 113.4 mg/kg, dw; Zn 183.1 mg/kg, dw; Cu 19.41 mg/kg, dw; 0.846 mg/kg, dw). Heavy metal accumulation in different ecological compartments was analyzed by principle component analysis (PCA), and there is one majority of grouped heavy metals concentration as similar in composition of ecological compartment, with the Cd concentration quite dissimilar. In relation to future prospect, phytoremediation technology for enhanced heavy metal accumulation by constructed wetland is still in early stage and needs more attention in gene manipulation area.


Subject(s)
Wetlands , Zinc , Animals , Carps , China , Environmental Monitoring , Lead , Metals, Heavy , Water Pollutants, Chemical
20.
J Nanosci Nanotechnol ; 15(6): 4426-30, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26369060

ABSTRACT

The room temperature ferromagnetic behavior of InN nanostructures grown by molecular beam epitaxy (MBE) is explored by means of magnetization measurements. The saturation magnetization and remanent magnetization are found to be strongly dependent on the size of the nanostructures. This suggests that the ferromagnetism is essentially confined to the surface of the nanostructures due to the possible defects. Raman spectroscopy shows the existence of indium vacancies which could be the source of ferromagnetic ordering in InN nanostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...