Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(31): 20880-20891, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37525899

ABSTRACT

Binuclear coinage metal phosphine complexes are examined under ion trap isolation in order to elucidate their noncovalent binding, structural properties and intrinsic electronic spectra. Our survey shows an intriguing order of electronic transitions obtained by in situ synthesis and mass-spectrometrically supported UV photodissociation spectroscopy on a series of six isolated homo- and heterobinuclear complexes of type [MM'(dcpm)2]2+ (M, M' = CuI, AgI, AuI; dcpm = bis(dicyclohexyl-phosphino)methane). This approach provides the unique opportunity to study all possible coinage metal interactions within a fixed ligand framework. A successive blue-shift (33 700-38 500 cm-1; 297-260 nm) of the lowest-energy bright electronic transition energy in gas phase was observed in the order of Cu2 < CuAu < CuAg < Au2 < AgAu < Ag2. This order was reproduced by quantum chemical calculations using a scalar-relativistic GW-Bethe-Salpeter-equation (GW-BSE) approach. Theory ascribes the electronic bands of all complexes to metal-centered 1MC(dσ*-pσ) transitions revealing a strengthening of metal-metal' (M-M') binding upon excitation, in agreement to mass spetrometric results. A test of the correlation of transition energies with M-M' distance by quantum chemical calculations of single point energies as a function of intermetallic distance indicates qualitative agreement with experimental results. However, the experimentally observed high sensitivity of spectroscopic shifts towards metal composition cannot be accounted for solely by M-M' distance variation. The differences in electronic transitions are qualitatively rationalized by the varying (n + 1)s (n = 3, 4, 5) orbital contributions (increase from Cu2via CuAu/CuAg to Au2/AgAu/Ag2) within the nd(n + 1)s/p-hybridization for the ground electronic state of the different complexes, whereas the excited state (of (n + 1)p orbital character) shows significantly less variation in energy. In particular, the observed spectroscopic and mass spectrometric sequence for the Ag/Au complexes is traced back to the interplay of Pauli repulsion and variation in metal-ligand bond strength within the orbital hybridization model.

2.
Chemistry ; 27(61): 15136-15146, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34632659

ABSTRACT

We report the binding geometries of the isomers that are formed when the hydrogen oxalate ((CO2 )2 H=HOx) anion attaches to dinuclear coinage metal phosphine complexes of the form [M1 M2 dcpm2 (HOx)]+ with M=Cu, Ag and dcpm=bis(dicyclohexylphosphino)methane, abbreviated [MM]+ . These structures are established by comparison of isomer-selective experimental vibrational band patterns displayed by the cryogenically cooled and N2 -tagged cations with DFT calculations of the predicted spectra for various local minima. Two isomeric classes are identified that feature either attachment of the carboxylate oxygen atoms to the two metal centers (end-on docking) or attachment of oxygen atoms on different carbon atoms asymmetrically to the metal ions (side-on docking). Within each class, there are additional isomeric variations according to the orientation of the OH group. This behavior indicates that HOx undergoes strong and directional coordination to [CuCu]+ but adopts a more flexible coordination to [AgAg]+ . Infrared spectra of the bare ions, fragmentation thresholds and ion mobility measurements are reported to explore the behaviors of the complexes at ambient temperature.

3.
Chemistry ; 25(48): 11269-11284, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31188502

ABSTRACT

The photoexcitation of a triangular silver(I) hydride complex, [Ag3 (µ3 -H)(µ2 -dcpm)3 ](PF6 )2 ([P](PF6 )2 , dcpm=bis(dicyclohexylphosphino)methane), designed with "UV-silent" bis-phosphine ligands, provokes hydride-to-Ag3 single and double electron transfer. The nature of the electronic transitions has been authenticated by absorption and photodissociation spectroscopy in parallel with high-level quantum-chemical computations utilizing the GW method and Bethe-Salpeter equation (GW-BSE). Specific photofragments of mass-selected [P]2+ ions testify to charge transfer and competing pathways resulting from the unique [Ag3 (µ3 -H)]2+ scaffold. This structural motif of [P](PF6 )2 has been unequivocally verified by 1 H NMR spectroscopy in concert with DFT and X-ray diffraction structural analysis, which revealed short equilateral Ag-Ag distances (dAgAg =3.08 Å) within the range of argentophilic interactions. The reduced radical cation [P]. + exhibits strong oxophilicity, forming [P+O2 ].+ ,which is a model intermediate for silver oxidation catalysis.

4.
J Phys Chem A ; 122(27): 5799-5810, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-29898601

ABSTRACT

We report on the radiative and nonradiative deactivation pathways of selected charge states of the stoichiometric hexagold phosphine-stabilized ionic clusters, [(C)(AuDppy)6Ag2·(BF4) x](4- x)+ with x = 2 and 3 (Dppy = diphenylphosphino-2-pyridine), combining gas-phase photoluminescence and photodissociation with quantum chemical computations. These clusters possess an identical isostructural core made of a hyper-coordinated carbon at their center octahedrally surrounded by six gold ions, and two silver ions at their apexes. Their luminescence and fragmentation behavior upon photoexcitation was investigated under mass and charge control in an ion trap. The experimental and computational results shed light on the electronic states involved in the optical transitions as well as on their core, ligand, or charge transfer character. Gas-phase results are discussed in relation with condensed phase measurements, as well as previous observations in solution and on metal-organic frameworks. The monocationic species ( x = 3) is found to be less stable than the dicationic one ( x = 2). In the luminescence spectrum of the monocationic species, a shoulder at short wavelength can be observed and is assigned to fragment emission. This fragment formation appears to be favored for the monocation by the existence of a low lying singlet state energetically overlapping with the triplet state manifold, which is populated quickly after photoexcitation.

5.
Chemistry ; 24(23): 6094-6104, 2018 Apr 20.
Article in English | MEDLINE | ID: mdl-29377298

ABSTRACT

The hybrid ligand 3-(2,2'-bipyridine-6-ylmethyl)-1-mesityl-1H-imidazolylidene (NHCBipy ) featuring both carbene and N-donor sites, was selectively complexed with various d10 metal cations in order to examine its coordination behavior with regard to homo and heterometallic structures. Respective silver complexes can be obtained by the silver oxide route and are suitable transmetallation reagents for the synthesis of gold(I) compounds. Starting from the mononuclear complexes [(NHCBipy )AuCl], [(NHCBipy )Au(C6 F5 )] and [(NHCBipy )2 Au][ClO4 ], open-chain as well as cyclic heterobimetallic complexes containing Cu+ , Ag+ , Zn2+ , Cd2+ , and Hg2+ were synthesized. Furthermore, the homobimetallic species [(NHCBipy )2 M2 ][ClO4 ]2 (M=Cu, Ag) were obtained. All bimetallic compounds were fully characterized including single-crystal X-ray analysis. Their photoluminescence (PL) properties were investigated in the solid state at temperatures between 15 and 295 K and compared with those of the mononuclear species. There is a clear difference in PL properties between the open chain and the cyclic heterobimetallic complexes. The latter species show different PL properties, depending on the metals involved. In addition, collision-induced dissociation (CID) experiments were performed on electrosprayed cations of the cyclic heterobimetallic compounds, to compare the metal binding at the carbene and N-donor sites.

6.
J Phys Chem Lett ; 9(4): 804-810, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29370699

ABSTRACT

The recently introduced pump-probe fragmentation action spectroscopy reveals a unique observation of excited state vibrational coherence (430-460 fs) in the isolated metal complex [Ag2(Cl)(dcpm)2)]+ (dcpm = bis(dicyclohexylphosphino)methane) containing the [Ag2Cl]+ scaffold. After photoexcitation by an 1XMCT transition (260 nm) in an ion trap, an unexpected correlation between specific fragment ions (loss of HCl/Cl- vs loss of dcpm) and the phase of the wave packet is probed (1150 nm). Based on ab initio calculations, we assign the primary electronically excited state and ascribe the observed coherences (72-78 cm-1) to contain predominantly Ag-Ag stretch character. We propose specific probe absorption and vibronic coupling at the classical turning points to switch remarkably early on between the different fragmentation pathways. The overall excited state dynamics are fitted to a multiexponential decay with time constants: 0.2-0.4/3-4/19-26/104-161 ps. These findings open new perspectives for further dynamics investigations and possible applications in photocatalysis.

7.
J Chem Phys ; 144(5): 054305, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26851919

ABSTRACT

Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt2(µ-P2O5H2)4 + 2H](2-) after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet (1)A2u state and concomitant rise in population of the triplet (3)A2u state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet (1)A2u state takes only a few picoseconds, ESETD from the triplet (3)A2u state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt2(µ-P2O5H2)4 + 2H](2-) is the first example of a photoexcited multianion for which ESETD has been observed following ISC.

SELECTION OF CITATIONS
SEARCH DETAIL
...