Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 131(1): 414-423, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34080920

ABSTRACT

Studies in humans and animal models with spinal cord injury (SCI) have demonstrated that medications targeting serotonin receptors may decrease the susceptibility to central sleep-disordered breathing (SDB). We hypothesized that mirtazapine would decrease the propensity to develop hypocapnic central sleep apnea (CSA) during sleep. We performed a single-blind pilot study on a total of 10 men with SDB (7 with chronic SCI and 3 noninjured) aged 52.0 ± 11.2 yr. Participants were randomly assigned to either mirtazapine (15 mg at bedtime) or a placebo for at least 1 wk, followed by a 7-day washout period before crossing over to the other intervention. Split-night studies included polysomnography and induction of hypocapnic CSA using a noninvasive ventilation (NIV) protocol. The primary outcome was CO2 reserve, defined as the difference between eupneic and end of NIV end-tidal CO2 ([Formula: see text]) preceding induced hypocapneic CSA. Secondary outcomes included controller gain (CG), other ventilatory parameters, and SDB severity. CG was defined as the ratio of change in minute ventilation (V̇e) between control and hypopnea to the change in CO2 during sleep. CO2 reserve was significantly widened on mirtazapine than placebo (-3.8 ± 1.2 vs. -2.0 ± 1.5 mmHg; P = 0.015). CG was significantly decreased on mirtazapine compared with placebo [2.2 ± 0.7 vs. 3.5 ± 1.9 L/(mmHg × min); P = 0.023]. There were no significant differences for other ventilatory parameters assessed or SDB severity between mirtazapine and placebo trials. These findings suggest that the administration of mirtazapine can decrease the susceptibility to central apnea by reducing chemosensitivity and increasing CO2 reserve; however, considering the lack of changes in apnea-hypopnea index (AHI), further research is required to understand the significance of this finding.NEW & NOTEWORTHY To our knowledge, this research study is novel as it is the first study in humans assessing the effect of mirtazapine on CO2 reserve and chemosensitivity in individuals with severe sleep-disordered breathing. This is also the first study to determine the potential therapeutic effects of mirtazapine on sleep parameters in individuals with a spinal cord injury.


Subject(s)
Sleep Apnea Syndromes , Sleep Apnea, Central , Animals , Humans , Male , Mirtazapine , Pilot Projects , Single-Blind Method , Sleep Apnea, Central/drug therapy
2.
J Appl Physiol (1985) ; 129(4): 675-682, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32816639

ABSTRACT

Spinal cord injury (SCI) is a risk factor for central sleep apnea (CSA). Previous studies in animal models with SCI have demonstrated a promising recovery in respiratory and phrenic nerve activity post-injury induced by the systemic and local administration of serotonin receptor agonists such as Buspirone and Trazodone. Human trials must be performed to determine whether individuals with SCI respond similarly. We hypothesized that Buspirone and Trazodone would decrease the propensity to hypocapnic CSA during sleep. We studied eight males with chronic SCI and sleep-disordered breathing (SDB) [age: 48.8 ± 14.2 yr; apnea-hypopnea index (AHI): 44.9 ± 23.1] in a single-blind crossover design. For 13 days, participants were randomly assigned either Buspirone (7.5-15 mg twice daily), Trazodone (100 mg), or a placebo followed by a 14-day washout period before crossing over to the other interventions. Study nights included polysomnography and induction of CSA using a noninvasive ventilation protocol. We assessed indexes of SDB, CO2 reserve, apneic threshold (AT), controller gain (CG), plant gain (PG), and ventilatory parameters. CO2 reserve was significantly widened on Buspirone (-3.6 ± 0.9 mmHg) compared with both Trazodone (-2.5 ± 1.0 mmHg, P = 0.009) and placebo (-1.8 ± 1.5 mmHg, P < 0.001) but not on Trazodone vs. placebo (P = 0.061). CG was significantly decreased on Buspirone compared with placebo (1.8 ± 0.4 vs. 4.0 ± 2.0 L/(mmHg·min), P = 0.025) but not on Trazodone compared with placebo (2.5 ± 1.1 vs. 4.0 ± 2.0 L/(mmHg·min); P = 0.065). There were no significant differences for PG, AT, or any SDB indexes (AHI, obstructive apnea index, central apnea index, oxygen desaturation index). The administration of Buspirone decreased the susceptibility to induced hypocapnic central apnea by reducing chemosensitivity and increasing CO2 reserve in chronic SCI patients.NEW & NOTEWORTHY This research study is novel as it is the first study in a humans that we are aware of that demonstrates the ability of Buspirone to increase CO2 reserve and hence decrease susceptibility to hypocapnic central apnea in patients with spinal cord injury.


Subject(s)
Sleep Apnea, Central , Spinal Cord Injuries , Adult , Animals , Buspirone , Humans , Male , Middle Aged , Polysomnography , Single-Blind Method
SELECTION OF CITATIONS
SEARCH DETAIL