Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 541: 213-225, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30690265

ABSTRACT

Disperse polymethylsiloxane (PMS) alone and in a mixture with highly disperse nanosilica A-300 was studied as a dry powder and a hydrogel located in various dispersion media (air, chloroform alone and with addition of trifluoroacetic acid) using low-temperature 1H NMR spectroscopy, cryoporometry, thermogravimetry, nitrogen adsorption, microscopy, infrared spectroscopy, and quantum chemistry. The powders of dried PMS and PMS/A-300 can be easily rehydrated upon strong stirring with added water. The slurry properties depend on mechanical treatment features due to stronger compaction of the secondary structures with increasing mechanical loading. The organization of bound water (at a constant hydration degree h = 1 g/g) depends strongly on the dispersion media (because chloroform can displace water from narrow interparticle voids into broader ones or into pores inaccessible for larger CDCl3 molecules) and mechanical loading reorganizing aggregates of PMS and A-300 nanoparticles (<1 µm in size) and agglomerates (>1 µm) of aggregates. The PMS/nanosilica blends could be of interest from a practical point of view due to additional control of the textural and structural characteristics determining efficiency of sorbents with respect to low- and high-molecular weight compounds depending on the dispersion media that is of importance, e.g., for medical applications.

2.
J Colloid Interface Sci ; 513: 809-819, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29222980

ABSTRACT

Interaction of doxorubicin hydrochloride (DOX) (anti-cancer drug) with hydro-compacted nanosilica A-300 (cA-300) alone or cA-300/human serum albumin (HSA) at a small content of water (h = 0.4 g per gram of dry silica) in different dispersion media (air, chloroform, and chloroform/trifluoroacetic acid) was analyzed using low-temperature 1H NMR spectroscopy, NMR cryoporometry and quantum chemistry to elucidate specific changes in the interfacial layers. Initial (bulk density ρb ≈ 0.046 g/cm3) and hydro-compacted (ρb ≈ 0.051-0.265 g/cm3 as a function of the hydration degree) nanosilicas were analyzed using nitrogen adsorption-desorption, gelatin adsorption, small angle X-ray scattering (SAXS), TEM, and infrared (FTIR) spectroscopy. Equilibrium adsorption of DOX onto cA-300 and cA-300/HSA was analyzed using ultraviolet-visible light spectroscopy. Photon correlation spectroscopy was used to analyze the particle size distribution in aqueous suspensions with various contents of components. DOX more strongly bound to HSA than silica also affects structure of interfacial water layers that depends on dispersion media because chloroform as immiscible with water changes the water organization to enlarge water structures. In aqueous media, DOX alone remains mainly in the form of nano/microparticles (50 nm-2 µm in size). However, with the presence of cA-300, cA-300/HSA, and HSA alone DOX transforms into pure nano-sized structures. These effects are explained by effective bonding of DOX to HSA having good transport properties with respect to drug molecules/ions that exceed similar properties of nanosilica alone, but cA-300/HSA can be a more effective composite as a drug carrier.


Subject(s)
Antibiotics, Antineoplastic/metabolism , Doxorubicin/metabolism , Drug Carriers/chemistry , Nanoparticles/chemistry , Serum Albumin, Human/metabolism , Silicon Dioxide/metabolism , Antibiotics, Antineoplastic/chemistry , Doxorubicin/chemistry , Humans , Serum Albumin, Human/chemistry , Silicon Dioxide/chemistry , Suspensions
3.
J Colloid Interface Sci ; 426: 48-55, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24863764

ABSTRACT

To control the properties of poly(dimethylsiloxane) (PDMS, Oxane 1000) as a bio-inert material, the characteristics of Oxane 1000 were compared for PDMS alone and interacting with silica gel Si-100 and nanosilica PS400. Low-temperature (1)H NMR spectroscopy, applied to static samples at 200-300 K, and differential scanning calorimetry (DSC) at 153-393 K were used to analyze the properties of PDMS and composites. The NMR study shows that liquid and solid-like fractions of PDMS co-exist over a broad temperature range. The cooling-heating cycles give hysteresis loops of intensity of (1)H NMR signals of methyl groups of a liquid fraction of PDMS vs. temperature depending on the silica type. The loop width differs for PDMS alone and bound to silicas, and the samples preheated at 420 K are characterized by much narrower loops. DSC measurements of the samples show a significant difference in the thermograms on the first and second DSC scans that depend on the silica type. For PDMS confined in pores of silica gel, 3D spatial structure of the polymers can be more ordered than that of PDMS located in thin layers at a surface of nanosilica. Therefore, both melting endotherms and crystallization exotherms are observed for PDMS/silica gel. However, for PDMS/nanosilica, both thermal features are much weaker and observed during only the first DSC scan.


Subject(s)
Cold Temperature , Dimethylpolysiloxanes/chemistry , Hot Temperature , Nanostructures , Silicon Dioxide/chemistry , Calorimetry, Differential Scanning
4.
J Colloid Interface Sci ; 394: 467-74, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23313347

ABSTRACT

The interfacial behavior of silicone oils Oxane 1000 and Oxane 5700 (polydimethylsiloxanes, PDMS) interacting with dried or hydrated (hydration h=0.005 or 0.1g/g) silica gels Si-60 and Si-100 or nanosilica A-400 was studied using low-temperature (1)H NMR spectroscopy over the 210-310 K range. Broadening of the melting temperature range toward both sides from the freezing point is observed for silicone oils confined in mesopores (2-15 nm in radius) of silica gel particles (0.2-0.5 mm in size) or voids (1-100 nm) between silica nanoparticles (5-10 nm in size) in their aggregates. This effect is a consequence of the phase state heterogeneity, since both liquid and solid-like fractions of adsorbed PDMS are observed over a large temperature range. The adsorbed PDMS heterogeneity depends on the pore size distribution (confined space effect), and it is lower for silica gel Si-100 possessing broader pores than Si-60. An increase in the amounts of adsorbed polymer and water diminishes the effects of confined space on PDMS because a fraction of the polymers is located in broader pores or out of pores (voids). This leads to relative decrease in interactions of PDMS with the silica surface. (1)H NMR spectra of PDMS and n-decane bound to silica gels reveal much stronger heterogenization of adsorbed PDMS (depending on the polymer length) than that of the alkane.


Subject(s)
Dimethylpolysiloxanes/chemistry , Silica Gel/chemistry , Silicon Dioxide/chemistry , Silicone Oils/chemistry , Adsorption , Magnetic Resonance Spectroscopy , Models, Molecular , Nanoparticles/chemistry , Porosity , Surface Properties , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...