Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Neuro Oncol ; 19(7): 918-929, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28387831

ABSTRACT

BACKGROUND: Prodrug-activator gene therapy with Toca 511, a tumor-selective retroviral replicating vector (RRV) encoding yeast cytosine deaminase, is being evaluated in recurrent high-grade glioma patients. Nonlytic retroviral infection leads to permanent integration of RRV into the cancer cell genome, converting infected cancer cell and progeny into stable vector producer cells, enabling ongoing transduction and viral persistence within tumors. Cytosine deaminase in infected tumor cells converts the antifungal prodrug 5-fluorocytosine into the anticancer drug 5-fluorouracil, mediating local tumor destruction without significant systemic adverse effects. METHODS: Here we investigated mechanisms underlying the therapeutic efficacy of this approach in orthotopic brain tumor models, employing both human glioma xenografts in immunodeficient hosts and syngeneic murine gliomas in immunocompetent hosts. RESULTS: In both models, a single injection of replicating vector followed by prodrug administration achieved long-term survival benefit. In the immunodeficient model, tumors recurred repeatedly, but bioluminescence imaging of tumors enabled tailored scheduling of multicycle prodrug administration, continued control of disease burden, and long-term survival. In the immunocompetent model, complete loss of tumor signal was observed after only 1-2 cycles of prodrug, followed by long-term survival without recurrence for >300 days despite discontinuation of prodrug. Long-term survivors rejected challenge with uninfected glioma cells, indicating immunological responses against native tumor antigens, and immune cell depletion showed a critical role for CD4+ T cells. CONCLUSION: These results support dual mechanisms of action contributing to the efficacy of RRV-mediated prodrug-activator gene therapy: long-term tumor control by prodrug conversion-mediated cytoreduction, and induction of antitumor immunity.


Subject(s)
Brain Neoplasms/immunology , Brain Neoplasms/therapy , Genetic Therapy/methods , Glioma/immunology , Glioma/therapy , Neoplasm Recurrence, Local/therapy , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Survival , Cytosine Deaminase/genetics , Female , Genetic Vectors/physiology , Glioma/pathology , Humans , Mice , Retroviridae/physiology , Survival Analysis
2.
Expert Opin Ther Targets ; 20(10): 1155-67, 2016 10.
Article in English | MEDLINE | ID: mdl-27359377

ABSTRACT

OBJECTIVE: Temozolomide (TMZ) improves Glioblastoma Multiforme (GBM) patient survival. The invasive behavior of the glioma cells is the cause of GBM relapse. The glioma BK ion channel (gBK) may provide glioma cells with a mechanism to invade surrounding tissue. gBK contains epitopes that cytolytic T lymphocytes (CTLs) can recognize and kill glioma cells. Fascin-1 is an actin crosslinking molecule that supports microvilli; these membrane protrusions provide a physical defense against CTLs. TMZ was investigated to determine its effect on gBK and fascin-1 expression. RESEARCH DESIGN AND METHODS: Human glioma cells cultured in TMZ were analyzed for their altered mRNA and gBK protein levels by using quantitative real time PCR, immunostaining and cellular functional assays. RESULTS: TMZ slowed glioma cell growth and inhibited their transmigratory properties due to loss of fascin-1. TMZ induced increased gBK and HLA expression and allowed these TMZ-treated cells to become better targets for gBK-specific CTLs. CONCLUSIONS: Besides its traditional chemotherapeutic effect, TMZ can have four other targeted pathways: 1) slowed glioma cell growth; 2) inhibited glioma cell transmigration; 3) increased HLA-A2 and gBK tumor antigen production; 4) increased CTL-mediated cytolysis of the TMZ treated glioma cells due to the loss of their defensive membrane protrusions supported by fascin-1.


Subject(s)
Carrier Proteins/genetics , Dacarbazine/analogs & derivatives , Glioma/drug therapy , Large-Conductance Calcium-Activated Potassium Channels/genetics , Microfilament Proteins/genetics , Antineoplastic Agents, Alkylating/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Dacarbazine/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioma/genetics , Glioma/pathology , Humans , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Temozolomide
4.
Neuro Oncol ; 18(3): 368-78, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26330563

ABSTRACT

BACKGROUND: Immunotherapy is an ideal treatment modality to specifically target the diffusely infiltrative tumor cells of malignant gliomas while sparing the normal brain parenchyma. However, progress in the development of these therapies for glioblastoma has been slow due to the lack of immunogenic antigen targets that are expressed uniformly and selectively by gliomas. METHODS: We utilized human glioblastoma cell cultures to induce expression of New York-esophageal squamous cell carcinoma (NY-ESO-1) following in vitro treatment with the demethylating agent decitabine. We then investigated the phenotype of lymphocytes specific for NY-ESO-1 using flow cytometry analysis and cytotoxicity against cells treated with decitabine using the xCelligence real-time cytotoxicity assay. Finally, we examined the in vivo application of this immune therapy using an intracranially implanted xenograft model for in situ T cell trafficking, survival, and tissue studies. RESULTS: Our studies showed that treatment of intracranial glioma-bearing mice with decitabine reliably and consistently induced the expression of an immunogenic tumor-rejection antigen, NY-ESO-1, specifically in glioma cells and not in normal brain tissue. The upregulation of NY-ESO-1 by intracranial gliomas was associated with the migration of adoptively transferred NY-ESO-1-specific lymphocytes along white matter tracts to these tumors in the brain. Similarly, NY-ESO-1-specific adoptive T cell therapy demonstrated antitumor activity after decitabine treatment and conferred a highly significant survival benefit to mice bearing established intracranial human glioma xenografts. Transfer of NY-ESO-1-specific T cells systemically was superior to intracranial administration and resulted in significantly extended and long-term survival of animals. CONCLUSION: These results reveal an innovative, clinically feasible strategy for the treatment of glioblastoma.


Subject(s)
Antigens, Neoplasm/immunology , Glioblastoma/therapy , Immunotherapy, Adoptive , T-Lymphocytes/drug effects , Animals , Antigens, Neoplasm/metabolism , Azacitidine/analogs & derivatives , Azacitidine/therapeutic use , Cell Line, Tumor , Decitabine , Disease Models, Animal , Glioblastoma/immunology , Glioblastoma/metabolism , Humans , Mice
5.
J Neuroinflammation ; 12: 134, 2015 Jul 19.
Article in English | MEDLINE | ID: mdl-26186920

ABSTRACT

BACKGROUND: Rasmussen encephalitis (RE) is a rare neuroinflammatory disease characterized by intractable seizures and progressive atrophy on one side of the cerebrum. Perivascular cuffing and clusters of T cells in the affected cortical hemisphere are indicative of an active cellular immune response. METHODS: Peripheral blood mononuclear cells (PBMCs) and brain-infiltrating lymphocytes (BILs) were isolated from 20 RE surgery specimens by standard methods, and CD3(+) T cell populations were analyzed by flow cytometry. Gamma delta T cell receptor spectratyping was carried out by nested PCR of reversed transcribed RNA extracted from RE brain tissue, followed by high resolution capillary electrophoresis. A MiSeq DNA sequencing platform was used to sequence the third complementarity determining region (CDR3) of δ1 chains. RESULTS: CD3(+) BILs from all of the RE brain specimens comprised both αß and γδ T cells. The median αß:γδ ratio was 1.9 (range 0.58-5.2) compared with a median ratio of 7.7 (range 2.7-40.8) in peripheral blood from the same patients. The αß T cells isolated from brain tissue were predominantly CD8(+), and the majority of γδ T cells were CD4(-) CD8(-). Staining for the early activation marker CD69 showed that a fraction of the αß and γδ T cells in the BILs were activated (median 42%; range 13-91%, and median 47%; range 14-99%, respectively). Spectratyping T cell receptor (TCR) Vδ1-3 chains from 14 of the RE brain tissue specimens indicated that the γδ T cell repertoire was relatively restricted. Sequencing δ1 chain PCR fragments revealed that the same prevalent CDR3 sequences were found in all of the brain specimens. These CDR3 sequences were also detected in brain tissue from 15 focal cortical dysplasia (FCD) cases. CONCLUSION: Neuroinflammation in RE involves both activated αß and γδ T cells. The presence of γδ T cells with identical TCR δ1 chain CDR3 sequences in all of the brain specimens examined suggests that a non-major histocompatibility complex (MHC)-restricted immune response to the same antigen(s) is involved in the etiology of RE. The presence of the same δ1 clones in CD brain implies the involvement of a common inflammatory pathway in both diseases.


Subject(s)
Encephalitis/immunology , Encephalitis/physiopathology , Immunity, Cellular/physiology , Receptors, Antigen, T-Cell, gamma-delta/physiology , T-Lymphocytes/physiology , Antigens, CD/immunology , Antigens, CD/physiology , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Differentiation, T-Lymphocyte/physiology , Brain/immunology , Brain/pathology , Brain/physiopathology , Child , Child, Preschool , Cohort Studies , Complementarity Determining Regions/immunology , Complementarity Determining Regions/physiology , Encephalitis/pathology , Epilepsy/immunology , Epilepsy/pathology , Epilepsy/physiopathology , Female , Humans , Immunity, Cellular/immunology , Infant , Lectins, C-Type/immunology , Lectins, C-Type/physiology , Male , Malformations of Cortical Development, Group I/immunology , Malformations of Cortical Development, Group I/pathology , Malformations of Cortical Development, Group I/physiopathology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell, alpha-beta/physiology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology
6.
Am J Transl Res ; 7(2): 271-84, 2015.
Article in English | MEDLINE | ID: mdl-25901196

ABSTRACT

Cancer cells derived from Glioblastoma multiforme possess membranous protrusions allowing these cells to infiltrate surrounding tissue, while resisting lymphocyte cytotoxicity. Microvilli and filopodia are supported by actin filaments cross-linked by fascin. Fascin-1 was genetically silenced within human U251 glioma cells; these knock-down glioma cells lost their microvilli/filopodia. The doubling time of these fascin-1 knock-down cells was doubled that of shRNA control U251 cells. Fascin-1 knock-down cells lost their transmigratory ability responding to interleukin-6 or insulin-like growth factor-1. Fascin-1 silenced U251 cells were more easily killed by cytolytic lymphocytes. Fascin-1 knock-down provides unique opportunities to augment glioma immunotherapy by simultaneously targeting several key glioma functions: like cell transmigration, cell division and resisting immune responses.

7.
J Vis Exp ; (96)2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25741775

ABSTRACT

We report a novel adaptation of the Radial Monolayer Cell Migration assay, first reported to measure the radial migration of adherent tumor cells on extracellular matrix proteins, for measuring the motility of fluorescently-labeled, non-adherent human or murine effector immune cells. This technique employs a stainless steel manifold and 10-well Teflon slide to focally deposit non-adherent T cells into wells prepared with either confluent tumor cell monolayers or extracellular matrix proteins. Light and/or multi-channel fluorescence microscopy is used to track the movement and behavior of the effector cells over time. Fluorescent dyes and/or viral vectors that code for fluorescent transgenes are used to differentially label the cell types for imaging. This method is distinct from similar-type in vitro assays that track horizontal or vertical migration/invasion utilizing slide chambers, agar or transwell plates. The assay allows detailed imaging data to be collected with different cell types distinguished by specific fluorescent markers; even specific subpopulations of cells (i.e., transduced/nontransduced) can be monitored. Surface intensity fluorescence plots are generated using specific fluorescence channels that correspond to the migrating cell type. This allows for better visualization of the non-adherent immune cell mobility at specific times. It is possible to gather evidence of other effector cell functions, such as cytotoxicity or transfer of viral vectors from effector to target cells, as well. Thus, the method allows researchers to microscopically document cell-to-cell interactions of differentially-labeled, non-adherent with adherent cells of various types. Such information may be especially relevant in the assessment of biologically-manipulated or activated immune cell types, where visual proof of functionality is desired with tumor target cells before their use for cancer therapy.


Subject(s)
Cell Movement/physiology , T-Lymphocytes, Cytotoxic/physiology , Animals , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Adhesion/physiology , Cell Communication/physiology , Cell Line, Tumor , Female , Fluorescent Dyes , Genetic Vectors , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Humans , Lymphocyte Culture Test, Mixed , Mice , Microscopy, Fluorescence , Retroviridae/genetics , T-Lymphocytes, Cytotoxic/cytology , Transduction, Genetic , Transgenes
8.
Am J Transl Res ; 6(3): 188-205, 2014.
Article in English | MEDLINE | ID: mdl-24936214

ABSTRACT

Big Potassium (BK) ion channels have several splice variants. One splice variant initially described within human glioma cells is called the glioma BK channel (gBK). Using a gBK-specific antibody, we detected gBK within three human small cell lung cancer (SCLC) lines. Electrophysiology revealed that functional membrane channels were found on the SCLC cells. Prolonged exposure to BK channel activators caused the SCLC cells to swell within 20 minutes and resulted in their death within five hours. Transduction of BK-negative HEK cells with gBK produced functional gBK channels. Quantitative RT-PCR analysis using primers specific for gBK, but not with a lung-specific marker, Sox11, confirmed that advanced, late-stage human SCLC tissues strongly expressed gBK mRNA. Normal human lung tissue and early, lower stage SCLC resected tissues very weakly expressed this transcript. Immunofluorescence using the anti-gBK antibody confirmed that SCLC cells taken at the time of the autopsy intensely displayed this protein. gBK may represent a late-stage marker for SCLC. HLA-A*0201 restricted human CTL were generated in vitro using gBK peptide pulsed dendritic cells. The exposure of SCLC cells to interferon-γ (IFN-γ) increased the expression of HLA; these treated cells were killed by the CTL better than non-IFN-γ treated cells even though the IFN-γ treated SCLC cells displayed diminished gBK protein expression. Prolonged incubation with recombinant IFN-γ slowed the in vitro growth and prevented transmigration of the SCLC cells, suggesting IFN-γ might inhibit tumor growth in vivo. Immunotherapy targeting gBK might impede advancement to the terminal stage of SCLC via two pathways.

9.
Lancet Neurol ; 13(2): 195-205, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24457189

ABSTRACT

Rasmussen's encephalitis is a rare chronic neurological disorder, characterised by unilateral inflammation of the cerebral cortex, drug-resistant epilepsy, and progressive neurological and cognitive deterioration. Neuropathological and immunological studies support the notion that Rasmussen's encephalitis is probably driven by a T-cell response to one or more antigenic epitopes, with potential additional contribution by autoantibodies. Careful analysis of the association between histopathology and clinical presentation suggests that initial damage to the brain is mediated by T cells and microglia, suggesting a window for treatment if Rasmussen's encephalitis can be diagnosed early. Advances in neuroimaging suggest that progression of the inflammatory process seen with MRI might be a good biomarker in Rasmussen's encephalitis. For many patients, families, and doctors, choosing the right time to move from medical management to surgery is a real therapeutic dilemma. Cerebral hemispherectomy remains the only cure for seizures, but there are inevitable functional compromises. Decisions of whether or when surgery should be undertaken are challenging in the absence of a dense neurological deficit, and vary by institutional experience. Further, the optimum time for surgery, to give the best language and cognitive outcome, is not yet well understood. Immunomodulatory treatments seem to slow rather than halt disease progression in Rasmussen's encephalitis, without changing the eventual outcome.


Subject(s)
Encephalitis , Encephalitis/pathology , Encephalitis/physiopathology , Encephalitis/therapy , Humans
10.
Oncoimmunology ; 2(10): e25989, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24244896

ABSTRACT

New treatments are needed for brain metastasis, which is associated with high morbidity and mortality. Two novel cellular and gene therapy modalities were evaluated in xenograft models for human breast cancer. The individual and especially the combined treatments with alloreactive cytotoxic T lymphocytes and replicating retroviral vectors coding for prodrug activating enzymes followed later with nontoxic prodrug demonstrated efficacy without off-target effects.

11.
Clin Cancer Res ; 19(15): 4137-48, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23780889

ABSTRACT

PURPOSE: Individual or combined strategies of cellular therapy with alloreactive CTLs (alloCTL) and gene therapy using retroviral replicating vectors (RRV) encoding a suicide prodrug activating gene were explored for the treatment of breast tumors metastatic to the brain. EXPERIMENTAL DESIGN: AlloCTL, sensitized to the HLA of MDA-MB-231 breast cancer cells, were examined in vitro for antitumor functionality toward breast cancer targets. RRV encoding the yeast cytosine deaminase (CD) gene was tested in vivo for virus spread, ability to infect, and kill breast cancer targets when exposed to 5-fluorocytosine (5-FC). Individual and combination treatments were tested in subcutaneous and intracranial xenograft models with 231BR, a brain tropic variant. RESULTS: AlloCTL preparations were cytotoxic, proliferated, and produced IFN-γ when coincubated with target cells displaying relevant HLA. In vivo, intratumorally placed alloCTL trafficked through one established intracranial 231BR focus to another in contralateral brain and induced tumor cell apoptosis. RRV-CD efficiently spread in vivo, infected 231BR and induced their apoptosis upon 5-FC exposure. Subcutaneous tumor volumes were significantly reduced in alloCTL and/or gene therapy-treated groups compared to control groups. Mice with established intracranial 231BR tumors treated with combined alloCTL and RRV-CD had a median survival of 97.5 days compared with single modalities (50-83 days); all experimental treatment groups survived significantly longer than sham-treated groups (median survivals 31.5 or 40 days) and exhibited good safety/toxicity profiles. CONCLUSION: The results indicate combining cellular and suicide gene therapies is a viable strategy for the treatment of established breast tumors in the brain.


Subject(s)
Brain Neoplasms/drug therapy , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Genetic Therapy , T-Lymphocytes, Cytotoxic , Adenoviridae , Animals , Brain Neoplasms/genetics , Brain Neoplasms/secondary , Breast Neoplasms/pathology , Combined Modality Therapy , Cytosine Deaminase/genetics , Cytosine Deaminase/therapeutic use , Female , Flucytosine/administration & dosage , Genes, Transgenic, Suicide/genetics , Genetic Vectors , Humans , Mice , Prodrugs/administration & dosage
12.
J Neuroinflammation ; 10: 56, 2013 May 02.
Article in English | MEDLINE | ID: mdl-23639073

ABSTRACT

BACKGROUND: Rasmussen encephalitis (RE) is a rare complex inflammatory disease, primarily seen in young children, that is characterized by severe partial seizures and brain atrophy. Surgery is currently the only effective treatment option. To identify genes specifically associated with the immunopathology in RE, RNA transcripts of genes involved in inflammation and autoimmunity were measured in brain tissue from RE surgeries and compared with those in surgical specimens of cortical dysplasia (CD), a major cause of intractable pediatric epilepsy. METHODS: Quantitative polymerase chain reactions measured the relative expression of 84 genes related to inflammation and autoimmunity in 12 RE specimens and in the reference group of 12 CD surgical specimens. Data were analyzed by consensus clustering using the entire dataset, and by pairwise comparison of gene expression levels between the RE and CD cohorts using the Harrell-Davis distribution-free quantile estimator method. RESULTS: Consensus clustering identified six RE cases that were clearly distinguished from the CD cases and from other RE cases. Pairwise comparison showed that seven mRNAs encoding interferon-γ, CCL5, CCL22, CCL23, CXCL9, CXCL10, and Fas ligand were higher in the RE specimens compared with the CD specimens, whereas the mRNA encoding hypoxanthine-guanine phosphoribosyltransferase was reduced. Interferon-γ, CXCL5, CXCL9 and CXCL10 mRNA levels negatively correlated with time from seizure onset to surgery (P <0.05), whereas CCL23 and Fas ligand transcript levels positively correlated with the degree of tissue destruction and inflammation, respectively (P <0.05), as determined from magnetic resonance imaging (MRI) T2 and FLAIR images. Accumulation of CD4+ lymphocytes in leptomeninges and perivascular spaces was a prominent feature in RE specimens resected within a year of seizure onset. CONCLUSIONS: Active disease is characterized by a Th1 immune response that appears to involve both CD8+ and CD4+ T cells. Our findings suggest therapeutic intervention targeting specific chemokine/chemokine receptors may be useful in early stage RE.


Subject(s)
Chemokines/biosynthesis , Encephalitis/genetics , Interferon-gamma/biosynthesis , Malformations of Cortical Development/genetics , Th1 Cells/immunology , Adolescent , Age of Onset , Algorithms , Blotting, Western , Chemokines/genetics , Child , Child, Preschool , Cohort Studies , Encephalitis/pathology , Epilepsy/etiology , Female , Functional Laterality , Hemispherectomy , Humans , Infant , Interferon-gamma/genetics , Magnetic Resonance Imaging , Male , Malformations of Cortical Development/pathology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction
13.
Clin Transpl ; : 93-101, 2013.
Article in English | MEDLINE | ID: mdl-25095496

ABSTRACT

Unmatched human leukocyte antigens (HLA) expressed by allogeneic donor cells are the major target for immunological rejection. In order to reduce the immunogenicity of allograft cells, we have developed lentiviral vectors for delivery of short hairpin ribonucleic acid (shRNA) against Class I HLA. This approach was evaluated in both an established human embryonic kidney cell line and primary human CD34+ hematopoietic stem/progenitor cells. Target cells transduced with lentiviral vectors expressing either HLA-A*0201 allele-specific or HLA-A, -B, -C consensus sequence-specific shRNA showed effective knockdown of cell surface HLA expression. Mixed lymphocyte-target cell reactions showed significantly reduced interferon-gamma production from alloreactive cytotoxic T lymphocytes and significantly reduced levels of target cell apoptosis after shRNA-mediated knockdown of HLA expression and target cell survival correlated with vector transduction efficiency. Furthermore, increasing resistance to complement-dependent cytotoxicity mediated by anti-HLA antibodies was observed to correlate with increasing levels of shRNA vector transduction in primary human CD34+ cells. Notably, non-HLA restricted killing by lymphokine-activated killer cells was not incurred after HLA knockdown. These data demonstrate the potential for genetic engineering strategies targeting incompatible HLA alleles to reduce both cellular and humoral responses and enable graft survival after transplantation of allogeneic cells and tissues.


Subject(s)
Genetic Therapy/methods , Graft Rejection/genetics , Graft Rejection/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , RNA Interference/immunology , Antibody Specificity , Antigens, CD34/metabolism , Cell Line, Transformed , Fetus/cytology , Fetus/metabolism , HEK293 Cells , Humans , Isoantigens/immunology , Killer Cells, Lymphokine-Activated/immunology , Lentivirus/genetics , Primary Cell Culture
14.
J Immunol ; 189(5): 2625-34, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22844111

ABSTRACT

Big potassium (BK) ion channels have several spliced variants. One spliced variant initially described within human glioma cells is the glioma BK (gBK) channel. This isoform consists of 34 aa inserted into the intracellular region of the basic BK ion channel. PCR primers specific for this inserted region confirmed that human glioma cell lines and freshly resected surgical tissues from glioblastoma multiforme patients strongly expressed gBK mRNA. Normal human brain tissue very weakly expressed this transcript. An Ab specific for this gBK isoform confirmed that human glioma cells displayed this protein in the cell membrane, mitochondria, Golgi, and endoplasmic reticulum. Within the gBK region, two putative epitopes (gBK1 and gBK2) are predicted to bind to the HLA-A*0201 molecule. HLA-A*0201-restricted human CTLs were generated in vitro using gBK peptide-pulsed dendritic cells. Both gBK1 and gBK2 peptide-specific CTLs killed HLA-A2⁺/gBK⁺ gliomas, but they failed to kill non-HLA-A2-expressing but gBK⁺ target cells in cytolytic assays. T2 cells loaded with exogenous gBK peptides, but not with the influenza M1 control peptide, were only killed by their respective CTLs. The gBK-specific CTLs also killed a variety of other HLA-A*0201⁺ cancer cells that possess gBK, as well as HLA-A2⁺ HEK cells transfected with the gBK gene. Of clinical relevance, we found that T cells derived from glioblastoma multiforme patients that were sensitized to the gBK peptide could also kill target cells expressing gBK. This study shows that peptides derived from cancer-associated ion channels maybe useful targets for T cell-mediated immunotherapy.


Subject(s)
Brain Neoplasms/immunology , Brain Neoplasms/therapy , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/therapeutic use , Glioma/immunology , Glioma/therapy , Large-Conductance Calcium-Activated Potassium Channels/genetics , Large-Conductance Calcium-Activated Potassium Channels/therapeutic use , Brain Neoplasms/pathology , Cell Line, Tumor , Cytotoxicity Tests, Immunologic , Epitopes, T-Lymphocyte/biosynthesis , Glioblastoma/immunology , Glioblastoma/pathology , Glioblastoma/therapy , Glioma/pathology , Hep G2 Cells , Humans , Immunotherapy, Active/methods , Large-Conductance Calcium-Activated Potassium Channels/biosynthesis , Neoplasm Invasiveness , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
15.
Neurosurg Clin N Am ; 23(3): 481-95, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22748660

ABSTRACT

This review provides historical and recent perspectives related to passive immunotherapy for high-grade gliomas. The authors discuss approaches that use lymphokine-activated killer cells, cytotoxic T lymphocytes, and monoclonal antibodies.


Subject(s)
Brain Neoplasms/therapy , Glioblastoma/therapy , Immunization, Passive/methods , Immunotherapy, Adoptive/methods , Antibodies, Monoclonal/therapeutic use , Brain Neoplasms/immunology , Cytokine-Induced Killer Cells/immunology , Glioblastoma/immunology , Humans , Radioimmunotherapy/methods , T-Lymphocytes, Cytotoxic/immunology , Tumor Escape
16.
Oncoimmunology ; 1(3): 298-305, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22737605

ABSTRACT

The efficacy of immunotherapeutic TLR7/8 activation by resiquimod (R848) was evaluated in vivo, in the CNS-1 rat glioma model syngeneic to Lewis rats. The immune treatment was compared with cytotoxic cyclophosphamide chemotherapy, and as well, was compared with the combination cytotoxic and immunotherapeutic treatments. We found that parenteral treatment with the TLR7/8 agonist, resiquimod, eventually induced complete tumor regression of CNS-1 glioblastoma tumors in Lewis rats. Cyclophosphamide (CY) treatment also resulted in dramatic CNS-1 remission, while the combined treatment showed similar antitumor effects. The resiquimod efficacy appeared not to be associated with direct injury to CNS-1 growth, while CY proved to exert tumoricidal cytotoxicity to the tumor cells. Rats that were cured by treatment with the innate immune response modifier resiquimod proved to be fully immune to secondary CNS-1 tumor rechallenge. They all remained tumor-free and survived. In contrast, rats that controlled CNS-1 tumor growth as a result of CY treatment did not develop immune memory, as demonstrated by their failure to reject a secondary CNS-1 tumor challenge; they showed a concomittant outgrowth of the primary tumor upon secondary tumor exposure. Rechallenge of rats that initially contained tumor growth by combination chemo-immunotherapy also failed to reject secondary tumor challenge, indicating that the cytotoxic effect of the CY likely extended to the endogenous memory immune cells as well as to the tumor. These data demonstrate strong therapeutic antitumor efficacy for the immune response modifier resiquimod leading to immunological memory, and suggest that CY treatment, although effective as chemotherapeutic agent, may be deleterious to maintenance of long-term antitumor immune memory. These data also highlight the importance of the sequence in which a multi-modal therapy is administered.

17.
Int J Nanomedicine ; 7: 1475-87, 2012.
Article in English | MEDLINE | ID: mdl-22619507

ABSTRACT

The peptide vaccine clinical trials encountered limited success because of difficulties associated with stability and delivery, resulting in inefficient antigen presentation and low response rates in patients with cancer. The purpose of this study was to develop a novel delivery approach for tumor antigenic peptides in order to elicit enhanced immune responses using poly(DL-lactide-co-glycolide) nanoparticles (PLGA-NPs) encapsulating tumor antigenic peptides. PLGA-NPs were made using the double emulsion-solvent evaporation method. Artificial antigen-presenting cells were generated by human dendritic cells (DCs) loaded with PLGA-NPs encapsulating tumor antigenic peptide(s). The efficiency of the antigen presentation was measured by interferon-γ ELISpot assay (Vector Laboratories, Burlingame, CA). Antigen-specific cytotoxic T lymphocytes (CTLs) were generated and evaluated by CytoTox 96(®) Non-Radioactive Cytotoxicity Assay (Promega, Fitchburg, WI). The efficiency of the peptide delivery was compared between the methods of emulsification in incomplete Freund's adjuvant and encapsulation in PLGA-NPs. Our results showed that most of the PLGA-NPs were from 150 nm to 500 nm in diameter, and were negatively charged at pH 7.4 with a mean zeta potential of -15.53 ± 0.71 mV; the PLGA-NPs could be colocalized in human DCs in 30 minutes of incubation. Human DCs loaded with PLGA-NPs encapsulating peptide induced significantly stronger CTL cytotoxicity than those pulsed with free peptide, while human DCs loaded with PLGA-NPs encapsulating a three-peptide cocktail induced a significantly greater CTL response than those encapsulating a two-peptide cocktail. Most importantly, the peptide dose encapsulated in PLGA-NPs was 63 times less than that emulsified in incomplete Freund's adjuvant, but it induced a more powerful CTL response in vivo. These results demonstrate that the delivery of peptides encapsulated in PLGA-NPs is a promising approach to induce effective antitumor CTL responses in vivo.


Subject(s)
Antigens, Neoplasm/administration & dosage , Cancer Vaccines/administration & dosage , Lactic Acid/chemistry , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Polyglycolic Acid/chemistry , Animals , Antigen Presentation , Cell Line, Tumor , Dendritic Cells/immunology , Drug Delivery Systems , Humans , Injections, Intraperitoneal , MART-1 Antigen/administration & dosage , Male , Mice , Mice, Inbred C57BL , Microscopy, Electron, Scanning , Nanomedicine , Nanoparticles/ultrastructure , Nanotechnology , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Neoplasms, Experimental/prevention & control , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/prevention & control , T-Lymphocytes, Cytotoxic/immunology
18.
Am J Transl Res ; 4(1): 114-26, 2012.
Article in English | MEDLINE | ID: mdl-22347526

ABSTRACT

We are accruing patients to a Phase I dose escalation cellular therapy trial (www.clinicaltrials.gov, NCT01144247) involving intratumoral placement of alloreactive cytotoxic T lymphocytes (alloCTL) for recurrent gliomas. The trial is being conducted to confirm the findings of a prior pilot study that indicated this adjuvant therapy may be beneficial in extending survival of recurrent WHO grade III gliomas. To reduce costs of the cellular therapy, we tested a number of synthetic tissue culture media and found the AIM-V growth medium superior for their growth. We also moved the production of the alloCTL from artificial capillary systems to less expensive tissue culture bags. To standardize alloCTL infusates used for therapy, release criteria of ≥60% CD3+ and ≥60% viability were established that consistently translated to a 4 hr cytotoxicity of ≥30% at a 30:1 effector to target ratio. To allow time for completion of quality control testing and transport to the infusion site, we determined that 30,000 IU of human recombinant Interleukin-2 in the cellular infusates sufficiently retained cell viability and cytotoxicity to allow a 10 hr expiration time to be placed on the infusates. We identified a cytotoxic T cell subset, CD3+/CD8+/CD69+, that demonstrated upregulated IFN-γ production upon exposure to relevant target cells. The phenotypic identification of this T cell subset was indicative of robust in vitro cytotoxic function and thus will be followed to determine if it correlates with patient immune response to treatment. Finally, other therapeutic agents routinely used for glioma treatment were integrated into an analysis of alloCTL cytotoxic functionality. Temozolomide and bevacizumab do not adversely affect cytotoxic function of the alloCTL in the short-term, thus providing rationale for further investigating combinatorial chemo-immunotherapy for gliomas.

19.
J Clin Cell Immunol ; Suppl 5: 004, 2012.
Article in English | MEDLINE | ID: mdl-24955288

ABSTRACT

The efficacy of a various immunotherapeutic immunisation strategies for malignant glioma brain cancer was evaluated in the syngeneic CNS-1 Lewis rat glioma model. A prototype glioma cancer vaccine, which was composed of multivalent antigens derived from allogeneic and syngeneic cells and lysates, formed the prototype preparation of antigens. These antigens reflect the autologous antigens derived from the patient's surgically removed tumor tissue, as well as allogeneic antigens form glioma tumor tissue surgically removed from donor patients. This antigen mixture provides a broad spectrum of tumor associated antigens (TAA) and helps to prevent escape of tumor immune surveillance when given as a vaccine. This antigen preparation was administered in a therapeutic setting with distinct single or multiple co-stimulation-favouring immunostimulants and evaluated for inhibition of tumor growth. Our prototype vaccine was able to arrest progression of tumor growth when co-delivered in a specific regimen together with the costimulating multi-TLR agonist, Bacille Calmette Guerin (BCG) and interleukin-2, or with the Toll-Like receptor (TLR) 7/8 activator resiquimod.

20.
J Transl Med ; 8: 100, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20946667

ABSTRACT

Despite new additions to the standard of care therapy for high grade primary malignant brain tumors, the prognosis for patients with this disease is still poor. A small contingent of clinical researchers are focusing their efforts on testing the safety, feasibility and efficacy of experimental active and passive immunotherapy approaches for gliomas and are primarily conducting Phase I and II clinical trials. Few trials have advanced to the Phase III arena. Here we provide an overview of the cellular therapies and vaccine trials currently open for patient accrual obtained from a search of http://www.clinicaltrials.gov. The search was refined with terms that would identify the Phase I, II and III immunotherapy trials open for adult glioma patient accrual in the United States. From the list, those that are currently open for patient accrual are discussed in this review. A variety of adoptive immunotherapy trials using ex vivo activated effector cell preparations, cell-based and non-cell-based vaccines, and several combination passive and active immunotherapy approaches are discussed.


Subject(s)
Brain Neoplasms/therapy , Cancer Vaccines/therapeutic use , Glioma/therapy , Adult , Clinical Trials as Topic , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...