Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Math Biol ; 74(1-2): 259-287, 2017 01.
Article in English | MEDLINE | ID: mdl-27225430

ABSTRACT

In the formation of large clusters out of small particles, the initializing step is called the nucleation, and consists in the spontaneous reaction of agents which aggregate into small and stable polymers called nuclei. After this early step, the polymers are involved in a number of reactions such as polymerization, fragmentation and coalescence. Since there may be several orders of magnitude between the size of a particle and the size of an aggregate, building efficient numerical schemes to capture accurately the kinetics of the reaction is a delicate step of key importance. In this article, we propose a conservative scheme, based on finite volume methods on an adaptive grid, which is capable of simulating well the early steps of the reaction as well as the later chain reactions.


Subject(s)
Models, Chemical , Computer Simulation , Kinetics , Polymers/chemistry
2.
J Biol Dyn ; 9: 172-97, 2015.
Article in English | MEDLINE | ID: mdl-26046598

ABSTRACT

We illustrate the use of statistical tools (asymptotic theories of standard error quantification using appropriate statistical models, bootstrapping, and model comparison techniques) in addition to sensitivity analysis that may be employed to determine the information content in data sets. We do this in the context of recent models [S. Prigent, A. Ballesta, F. Charles, N. Lenuzza, P. Gabriel, L.M. Tine, H. Rezaei, and M. Doumic, An efficient kinetic model for assemblies of amyloid fibrils and its application to polyglutamine aggregation, PLoS ONE 7 (2012), e43273. doi:10.1371/journal.pone.0043273.] for nucleated polymerization in proteins, about which very little is known regarding the underlying mechanisms; thus, the methodology we develop here may be of great help to experimentalists. We conclude that the investigated data sets will support with reasonable levels of uncertainty only the estimation of the parameters related to the early steps of the aggregation process.


Subject(s)
Amyloid/chemistry , Peptides/chemistry , Algorithms , Kinetics , Models, Biological , Models, Statistical , Polymerization , Sensitivity and Specificity
3.
Math Biosci Eng ; 11(3): 427-48, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24506547

ABSTRACT

A current thrust in medical research is the development of a non-invasive method for detection, localization, and characterization of an arterial stenosis (a blockage or partial blockage in an artery). A method has been proposed to detect shear waves in the chest cavity which have been generated by disturbances in the blood flow resulting from a stenosis. In order to develop this methodology further, we use one-dimensional shear wave experimental data from novel acoustic phantoms to validate a corresponding viscoelastic mathematical model. We estimate model parameters which give a good fit (in a sense to be precisely defined) to the experimental data, and use asymptotic error theory to provide confidence intervals for parameter estimates. Finally, since a robust error model is necessary for accurate parameter estimates and confidence analysis, we include a comparison of absolute and relative models for measurement error.


Subject(s)
Arterial Occlusive Diseases/diagnosis , Models, Cardiovascular , Computational Biology , Confidence Intervals , Constriction, Pathologic/diagnosis , Finite Element Analysis , Hemodynamics , Humans , Least-Squares Analysis , Mathematical Concepts , Models, Statistical , Phantoms, Imaging
4.
Int J Numer Methods Eng ; 98(2): 131-156, 2014 Apr 13.
Article in English | MEDLINE | ID: mdl-25834284

ABSTRACT

We revisit a method originally introduced by Werder et al. (in Comput. Methods Appl. Mech. Engrg., 190:6685-6708, 2001) for temporally discontinuous Galerkin FEMs applied to a parabolic partial differential equation. In that approach, block systems arise because of the coupling of the spatial systems through inner products of the temporal basis functions. If the spatial finite element space is of dimension D and polynomials of degree r are used in time, the block system has dimension (r + 1)D and is usually regarded as being too large when r > 1. Werder et al. found that the space-time coupling matrices are diagonalizable over [Formula: see text] for r ⩽100, and this means that the time-coupled computations within a time step can actually be decoupled. By using either continuous Galerkin or spectral element methods in space, we apply this DG-in-time methodology, for the first time, to second-order wave equations including elastodynamics with and without Kelvin-Voigt and Maxwell-Zener viscoelasticity. An example set of numerical results is given to demonstrate the favourable effect on error and computational work of the moderately high-order (up to degree 7) temporal and spatio-temporal approximations, and we also touch on an application of this method to an ambitious problem related to the diagnosis of coronary artery disease. Copyright © 2014 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.

SELECTION OF CITATIONS
SEARCH DETAIL
...