Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Funct ; 20(1): 3, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413998

ABSTRACT

BACKGROUND: Aging affects anxiety levels in rats while the pineal gland, via its hormone melatonin, could modulate their inherited life "clock." The present study aimed to explore the impact of plasma melatonin deficiency on anxiety responses and the possible involvement of the hypothalamic-pituitary-adrenocortical (HPA) axis and heat shock proteins (Hsp) 70 and 90 in the frontal cortex (FC) and the hippocampus in young adult, middle-aged and elderly rats with pinealectomy. RESULTS: Melatonin deficiency induced at different life stages did not affect the lifespan of rats. Pinealectomy abolished the circadian rhythm of motor activity, measured for 48 h in the actimeter, in young adult but not in middle-aged rats. Pinealectomy reduced the motor activity of the young adult rats during the dark phase and impaired the diurnal activity variations of old rats. The same generations (3- and 18 month-old rats with pinealectomy) had lower anxiety levels than the matched sham groups, measured in three tests: elevated-plus maze, light-dark test, and novelty-suppressed feeding test. While the activity of the HPA axis remained intact in young adult and middle-aged rats with melatonin deficiency, a high baseline corticosterone level and blunted stress-induced mechanism of its release were detected in the oldest rats. Age-associated reduced Hsp 70 and 90 levels in the FC but not in the hippocampus were detected. Pinealectomy diminished the expression of Hsp 70 in the FC of middle-aged rats compared to the matched sham rats. CONCLUSIONS: Our results suggest that while melatonin hormonal dysfunction impaired the motor activity in the actimeter and emotional behavior in young adult and elderly rats, the underlying pathogenic mechanism in these generations might be different and needs further verification.


Subject(s)
Melatonin , Pineal Gland , Humans , Rats , Animals , Middle Aged , Infant , Pineal Gland/surgery , Pineal Gland/physiology , Melatonin/pharmacology , Melatonin/physiology , Pinealectomy , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Anxiety , Motor Activity
2.
Int J Mol Sci ; 25(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38339146

ABSTRACT

A reduction in melatonin function contributes to the acceleration of Alzheimer's disease (AD), and understanding the molecular processes of melatonin-related signaling is critical for intervention in AD progression. Recently, we synthesized a series of melatonin analogues with donepezil fragments and tested them in silico and in vitro. In this study, one of the most potent compounds, 3c, was evaluated in a rat model of pinealectomy (pin) followed by icvAß1-42 infusion. Melatonin was used as the reference drug. Treatment with melatonin and 3c (10 mg/kg, i.p. for 14 days) had a beneficial effect on memory decline and the concomitant increase in hippocampal Aß1-42 and pTAU in the pin+icvAß1-42 rats. Melatonin supplementation facilitated non-amyloidogenic signaling via non-receptor (histone deacetylase sirtuin 1, SIRT1) and receptor-related signaling (MT/ERK/CREB). The hybrid 3c analogue up-regulated the MT1A and MT2B receptors, pERK and pCREB. Our results strongly support the hypothesis that melatonin-related analogues may become a promising drug candidate for Alzheimer's disease therapy.


Subject(s)
Alzheimer Disease , Melatonin , Peptide Fragments , Rats , Animals , Melatonin/pharmacology , Melatonin/therapeutic use , Alzheimer Disease/drug therapy , Donepezil/pharmacology , Pinealectomy , Hippocampus/metabolism , Amyloid beta-Peptides/metabolism , Memory Disorders/drug therapy , Memory Disorders/etiology
3.
Physiol Behav ; 269: 114268, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37308045

ABSTRACT

Spontaneously hypertensive rats (SHRs) are widely accepted for modeling essential hypertension and Attention deficit hyperactivity disorder (ADHD). However, data concerning central nervous system changes associated with behavioral responses of this strain and usage of Wistar Kyoto (WKY) rats as controls are confounding. The objective of the present study was to assess the impact of anxiety and motor activity on the cognitive responses of SHRs compared to Wistar and WKY rats. In addition, the role of brain-derived neurotrophic factor (BDNF) in the hippocampus on cognitive behavior and seizure susceptibility in the three strains was evaluated. In Experiment#1, SHR demonstrated impulsive responses in the novelty suppression feeding test accompanied by impaired spatial working and associative memory in the Y maze and object recognition test compared with the Wistar rat but not WKY rats. In addition, the WKY rats exhibited diminished activity compared to Wistar rats in an actimeter. In Experiment#2, the seizure susceptibility was assessed by 3-min electroencephalographic (EEG) recording after two consecutive injections of pentylenetetrazol (PTZ) (20+40 mg/kg). The WKY rats were more vulnerable to rhythmic metrazol activity (RMA) than the Wistar rats. In contrast, Wistar rats were more prone to generalized tonic-clonic seizures (GTCS) than WKY rats and SHRs. Control SHR had lower BDNF expression in the hippocampus compared to Wistar rats. However, while the BDNF levels were elevated in the Wistar and WKY rats after PTZ injection, no change in this signaling molecule was observed in the SHR in the seizure condition. The results suggest Wistar rats as a more appropriate control of SHR than WKY rats for studying memory responses mediated by BDNF in the hippocampus. The higher vulnerability to seizures in Wistar and WKY rats compared to SHR might be linked to PTZ-induced decreased expression of BDNF in the hippocampus.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Brain-Derived Neurotrophic Factor , Rats , Animals , Rats, Inbred SHR , Rats, Inbred WKY , Rats, Wistar , Anxiety/psychology , Attention Deficit Disorder with Hyperactivity/metabolism , Attention Deficit Disorder with Hyperactivity/psychology , Cognition , Seizures/chemically induced , Motor Activity , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...