Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 141(16): 6726-6739, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30943023

ABSTRACT

Historically accessed through two-electron, anionic chemistry, ketones, alcohols, and amines are of foundational importance to the practice of organic synthesis. After placing this work in proper historical context, this Article reports the development, full scope, and a mechanistic picture for a strikingly different way of forging such functional groups. Thus, carboxylic acids, once converted to redox-active esters (RAEs), can be utilized as formally nucleophilic coupling partners with other carboxylic derivatives (to produce ketones), imines (to produce benzylic amines), or aldehydes (to produce alcohols). The reactions are uniformly mild, operationally simple, and, in the case of ketone synthesis, broad in scope (including several applications to the simplification of synthetic problems and to parallel synthesis). Finally, an extensive mechanistic study of the ketone synthesis is performed to trace the elementary steps of the catalytic cycle and provide the end-user with a clear and understandable rationale for the selectivity, role of additives, and underlying driving forces involved.


Subject(s)
Alcohols/chemistry , Alcohols/chemical synthesis , Amines/chemistry , Amines/chemical synthesis , Ketones/chemistry , Ketones/chemical synthesis , Chemistry Techniques, Synthetic , Free Radicals/chemistry
2.
ACS Cent Sci ; 4(6): 760-767, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29974072

ABSTRACT

Tumors are phenotypically heterogeneous and include subpopulations of cancer cells with stemlike properties. The natural product salinomycin, a K+-selective ionophore, was recently found to exert selectivity against such cancer stem cells. This selective effect is thought to be due to inhibition of the Wnt signaling pathway, but the mechanistic basis remains unclear. Here, we develop a functionally competent fluorescent conjugate of salinomycin to investigate the molecular mechanism of this compound. By subcellular imaging, we demonstrate a rapid cellular uptake of the conjugate and accumulation in the endoplasmic reticulum (ER). This localization is connected to induction of Ca2+ release from the ER into the cytosol. Depletion of Ca2+ from the ER induces the unfolded protein response as shown by global mRNA analysis and Western blot analysis of proteins in the pathway. In particular, salinomycin-induced ER Ca2+ depletion up-regulates C/EBP homologous protein (CHOP), which inhibits Wnt signaling by down-regulating ß-catenin. The increased cytosolic Ca2+ also activates protein kinase C, which has been shown to inhibit Wnt signaling. These results reveal that salinomycin acts in the ER membrane of breast cancer cells to cause enhanced Ca2+ release into the cytosol, presumably by mediating a counter-flux of K+ ions. The clarified mechanistic picture highlights the importance of ion fluxes in the ER as an entry to inducing phenotypic effects and should facilitate rational development of cancer treatments.

3.
Chem Sci ; 9(3): 660-665, 2018 Jan 21.
Article in English | MEDLINE | ID: mdl-29629133

ABSTRACT

While computational prediction of chemical reactivity is possible it usually requires expert knowledge and there are relatively few computational tools that can be used by a bench chemist to help guide synthesis. The RegioSQM method for predicting the regioselectivity of electrophilic aromatic substitution reactions of heteroaromatic systems is presented in this paper. RegioSQM protonates all aromatic C-H carbon atoms and identifies those with the lowest free energies in chloroform using the PM3 semiempirical method as the most nucleophilic center. These positions are found to correlate qualitatively with the regiochemical outcome in a retrospective analysis of 96% of more than 525 literature examples of electrophilic aromatic halogenation reactions. The method is automated and requires only a SMILES string of the molecule of interest, which can easily be generated using chemical drawing programs such as ChemDraw. The computational cost is 1-10 minutes per molecule depending on size, using relatively modest computational resources and the method is freely available via a web server at ; http://www.regiosqm.org. RegioSQM should therefore be of practical use in the planning of organic synthesis.

4.
Science ; 360(6384): 75-80, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29456201

ABSTRACT

Cross-coupling chemistry is widely applied to carbon-carbon bond formation in the synthesis of medicines, agrochemicals, and other functional materials. Recently, single-electron-induced variants of this reaction class have proven particularly useful in the formation of C(sp2)-C(sp3) linkages, although certain compound classes have remained a challenge. Here, we report the use of sulfones to activate the alkyl coupling partner in nickel-catalyzed radical cross-coupling with aryl zinc reagents. This method's tolerance of fluoroalkyl substituents proved particularly advantageous for the streamlined preparation of pharmaceutically oriented fluorinated scaffolds that previously required multiple steps, toxic reagents, and nonmodular retrosynthetic blueprints. Five specific sulfone reagents facilitate the rapid assembly of a vast set of compounds, many of which contain challenging fluorination patterns.

5.
J Org Chem ; 81(12): 5128-34, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27176051

ABSTRACT

The validity of calculated NMR shifts to predict the outcome of electrophilic aromatic substitution reactions on different heterocyclic compounds has been examined. Based on an analysis of >130 literature examples, it was found that the lowest predicted (13)C and/or (1)H chemical shift of a heterocycle correlates qualitatively with the regiochemical outcome of halogenation reactions in >80% of the investigated cases. In the remaining cases, the site of electrophilic aromatic substitution can be explained by the calculated HOMO orbitals obtained using density functional theory. Using a combination of these two methods, the accuracy increases to >95%.

6.
Chem Biol Drug Des ; 86(6): 1378-86, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26058448

ABSTRACT

Aiming at development of multitarget drugs for the anticancer treatment, new silybin (SIL) conjugates with salinomycin (SAL) and monensin (MON) were synthesized, in mild esterification conditions, and their antiproliferative activity was studied. The conjugates obtained exhibit anticancer activity against HepG2, LoVo and LoVo/DX cancer cell lines. Moreover, MON-SIL conjugate exhibits higher anticancer potential and better selectivity than the corresponding SAL-SIL conjugate.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Monensin/pharmacology , Pyrans/pharmacology , Silymarin/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , BALB 3T3 Cells , Cell Line, Tumor , Drug Design , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Mice , Monensin/chemical synthesis , Monensin/chemistry , Pyrans/chemical synthesis , Pyrans/chemistry , Silybin , Silymarin/chemical synthesis , Silymarin/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...