Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 839270, 2022.
Article in English | MEDLINE | ID: mdl-35392514

ABSTRACT

Temperature is the primary factor affecting the morpho-physiological, developmental, and yield attributes of soybean. Despite several temperature and soybean studies, functional relationships between temperature and soybean physiology and yield components are limited. An experiment was conducted to determine the optimum temperature for soybean gas exchange and yield components using indeterminate (Asgrow AG5332, AG) and determinate (Progeny P5333 RY, PR) growth habit cultivars. Plants grown outdoors were exposed to 5 day/night temperature treatments, 21/13, 25/17, 29/21, 33/25, and 37°C/29°C, from flowering to maturity using the sunlit plant growth chambers. Significant temperature and cultivar differences were recorded among all measured parameters. Gas exchange parameters declined with increasing temperature treatments during the mid-pod filling stage, and quadratic functions best described the response. The optimum temperature for soybean pod weight, number, and seed number was higher for AG than PR, indicating greater high-temperature tolerance. Soybean exposed to warmer parental temperature (37°C/29°C) during pod filling decreased significantly the transgenerational seed germination when incubated at 18, 28, and 38°C. Our findings suggest that the impact of temperature during soybean development is transferable. The warmer temperature has adverse transgenerational effects on seed germination ability. Thus, developing soybean genotypes tolerant to high temperatures will help growers to produce high-yielding and quality beans. The quantified temperature, soybean physiology, and yield components-dependent functional algorithms would be helpful to develop adaptation strategies to offset the impacts of extreme temperature events associated with future climate change.

2.
J Econ Entomol ; 114(2): 702-709, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33503250

ABSTRACT

Plant densities in Mid-South U.S. soybean, Glycine max (L.) Merr., fields can vary greatly due to a wide range of factors, although soybean yields are generally insensitive to variations in density. Currently, it is unknown if yield loss from insect-related defoliation varies across different soybean stand densities. Soybean was planted in Starkville and Stoneville, MS, in 2016 and 2017 at five seeding rates ranging from 123,500 to 420,070 seed/ha in 74,130 seed/ha increments. Each seeding rate contained a nondefoliated plot and a plot that was defoliated 67% at the R1 growth stage. Defoliated plants had a greater leaf expansion rate from R1 to R3 than nondefoliated plants. Defoliation reduced yield where plant densities were <192,800 plants/ha, but greater densities were not affected. Reduced yield in defoliated plots when compared with nondefoliated plots at equivalent R3 leaf area index values indicated that some resources were used to replace the removed leaf area instead of seed production. These results suggest that fields with substandard plant densities might benefit from a reduced treatment threshold for defoliating pests.


Subject(s)
Glycine max , Plant Leaves , Animals , Insecta , Seeds
3.
J Econ Entomol ; 114(2): 993-997, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33459771

ABSTRACT

Soybean, Glycine max (L.) Merr., is planted during 3.5-4 mo across the Mid-South United States. Currently, no information exists regarding the effects of planting date on soybean yield loss from early season defoliation. In 2015 and 2016, to evaluate the effects of planting date on yield loss from defoliation, soybean were planted in field plots 2 wk apart from early April to mid-June, for a total of six planting dates. Each planting date included a nondefoliated control and a 100% defoliation treatment where leaves were manually excised at the V4 growth stage. Mean yield loss from defoliation varied across planting dates, with mid-April plantings having the least amount yield reduction, 573 kg/ha, and early-June plantings having the greatest yield reduction, 904 kg/ha. Percent yield reduction from defoliation increased as planting was delayed, suggesting that defoliation thresholds might need adjustment based on planting date and yield potential. However, more research is needed at lower levels of defoliation to accurately delineate such thresholds.


Subject(s)
Glycine max , Plant Leaves , Animals , Seasons
4.
Exp Brain Res ; 239(3): 787-796, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33398453

ABSTRACT

Light touch of a stable reference reduces sway during standing. However, unexpected displacement of a light touch reference leads to short-latency reactions in ankle muscles consistent with a balance reaction, that are replaced by responses in arm muscles on subsequent trials. We anticipated that the excitability of sensorimotor pathways arising from finger cutaneous afferents would reflect these changes in behavior. We hypothesized that (1) interlimb cutaneous reflexes in muscles of the ipsilateral leg, derived from median nerve (MED) stimulation would be facilitated when touch was stable, but reduced when touch was unreliable, (2) intralimb MED reflexes in muscles of the homonymous arm would be facilitated when touch was unreliable and participants tracked the touch reference with arm movements, and (3) radial nerve (RAD) evoked reflexes would be unaffected, given that the RAD innervation territory is not involved in the light touch task. Cutaneous reflexes were evoked using a transcutaneous train of pulses (5 × 1.0 ms square-wave pulses; 300 Hz) and recorded using electromyography of muscles of the ipsilateral arm and leg. As hypothesized, interlimb MED reflexes recorded in soleus (SOL) were larger when touching the stable reference (mean ± SD % MVC; 4.78 ± 1.57) than when not touching a reference (1.00 ± 1.05) or when touching an unstable reference (1.07 ± 1.16). In addition, intralimb MED reflexes in anterior deltoid (AD) were larger when touching an unstable reference (4.50 ± 1.31), compared to touching a stable reference (1.34 ± 1.01) or not touching (1.50 ± 1.00). In contrast, interlimb RAD reflexes in SOL were larger when not touching (4.29 ± 4.34), compared with touching a stable (1.14 ± 1.84) or unstable reference (3.11 ± 4.15). These findings indicate that cutaneous reflexes from the hand are scaled with a rapid change in motor behavior when a touch reference becomes unstable, suggesting that spinal sensorimotor pathways are functionally reweighted based in part upon the reliability of tactile inputs.


Subject(s)
Hand , Reflex , Electric Stimulation , Electromyography , Humans , Muscle, Skeletal , Reproducibility of Results , Standing Position
5.
Sci Total Environ ; 663: 338-350, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30716624

ABSTRACT

Underground aquifers that took millions of years to fill are being depleted due to unsustainable water withdrawals for crop irrigation. Concurrently, atmospheric warming due to anthropogenic greenhouse gases is enhancing demands for water inputs in agriculture. Accurate information on crop-ecosystem water use efficiencies [EWUE, amount of CO2 removed from the soil-crop-air system per unit of water used in evapotranspiration (ET)] is essential for developing environmentally and economically sustainable water management practices that also help account for CO2, the most abundant of the greenhouse gases, exchange rates from cropping systems. We quantified EWUE of corn (a C4 crop) and soybean and cotton (C3 crops) in a predominantly clay soil under humid climate in the Lower Mississippi (MS) Delta, USA. Crop-ecosystem level exchanges of CO2 and water from these three cropping systems were measured in 2017 using the eddy covariance method. Ancillary micrometeorological data were also collected. On a seasonal basis, all three crops were net sinks for CO2 in the atmosphere: corn, soybean, and cotton fixed -31,331, -23,563, and -8856 kg ha-1 of CO2 in exchange for 483, 552, and 367 mm of ET, respectively (negative values show that CO2 is fixed in the plant or removed from the air). The seasonal NEE estimated for cotton was 72% less than corn and 62% less than soybean. Half-hourly averaged maximum net ecosystem exchange (NEE) from these cropping systems were -33.6, -27.2, and -14.2 kg CO2 ha-1, respectively. Average daily NEE were -258, -169, and -65 kg CO2 ha-1, respectively. The EWUE in these three cropping systems were 53, 43, and 24 kg CO2 ha-1 mm-1 of water. Results of this investigation can help in adopting crop mixtures that are environmentally and economically sustainable, conserving limited water resources in the region.


Subject(s)
Carbon Cycle , Carbon Dioxide/metabolism , Glycine max/metabolism , Gossypium/metabolism , Water/metabolism , Zea mays/metabolism , Agricultural Irrigation , Crops, Agricultural/metabolism , Humidity , Mississippi
6.
J Agric Food Chem ; 61(26): 6161-6, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23789631

ABSTRACT

The degradation of environmentally long-term aged (22 years) ¹4C-labeled atrazine residues in soil stimulated by inoculation with atrazine-adapted soil from Belgium, the United States (U.S.), and Brazil at two different moisture regimes (50% WHCmax/slurried conditions) was evaluated. Inoculation of the soil containing the aged ¹4C-labeled atrazine residues with 5, 50, and 100% (w/w) Belgian, U.S., or Brazilian atrazine-adapted soil increased ¹4C-atrazine residue mineralization by a factor of 3.1-13.9, depending upon the amount of atrazine-adapted soil inocula and the moisture conditions. Aged ¹4C-atrazine residue mineralization varied between 2 and 8% for Belgian and between 1 and 2% for U.S. and Brazilian soil inoculum at 50% WHCmax but was increased under slurried conditions, accounting for 8-10% (Belgian soil), 2-7% (Brazilian soil), and 3% (American soil). The results show that an increased degradation of long-term aged ¹4C-labeled atrazine residues is possible by the transfer of atrazine-adapted soil microflora from different soils and regions to non-adapted soil.


Subject(s)
Atrazine/chemistry , Herbicides/chemistry , Pesticide Residues/chemistry , Soil Microbiology , Soil/chemistry , Atrazine/analysis , Atrazine/metabolism , Carbon Radioisotopes , Gram-Negative Bacteria/growth & development , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/growth & development , Gram-Positive Bacteria/isolation & purification , Gram-Positive Bacteria/metabolism , Herbicides/analysis , Herbicides/metabolism , Kinetics , Minerals/analysis , Minerals/chemistry , Minerals/metabolism , Pesticide Residues/analysis , Pesticide Residues/metabolism , Soil Pollutants/analysis , Soil Pollutants/chemistry , Soil Pollutants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...