Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 663: 338-350, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30716624

ABSTRACT

Underground aquifers that took millions of years to fill are being depleted due to unsustainable water withdrawals for crop irrigation. Concurrently, atmospheric warming due to anthropogenic greenhouse gases is enhancing demands for water inputs in agriculture. Accurate information on crop-ecosystem water use efficiencies [EWUE, amount of CO2 removed from the soil-crop-air system per unit of water used in evapotranspiration (ET)] is essential for developing environmentally and economically sustainable water management practices that also help account for CO2, the most abundant of the greenhouse gases, exchange rates from cropping systems. We quantified EWUE of corn (a C4 crop) and soybean and cotton (C3 crops) in a predominantly clay soil under humid climate in the Lower Mississippi (MS) Delta, USA. Crop-ecosystem level exchanges of CO2 and water from these three cropping systems were measured in 2017 using the eddy covariance method. Ancillary micrometeorological data were also collected. On a seasonal basis, all three crops were net sinks for CO2 in the atmosphere: corn, soybean, and cotton fixed -31,331, -23,563, and -8856 kg ha-1 of CO2 in exchange for 483, 552, and 367 mm of ET, respectively (negative values show that CO2 is fixed in the plant or removed from the air). The seasonal NEE estimated for cotton was 72% less than corn and 62% less than soybean. Half-hourly averaged maximum net ecosystem exchange (NEE) from these cropping systems were -33.6, -27.2, and -14.2 kg CO2 ha-1, respectively. Average daily NEE were -258, -169, and -65 kg CO2 ha-1, respectively. The EWUE in these three cropping systems were 53, 43, and 24 kg CO2 ha-1 mm-1 of water. Results of this investigation can help in adopting crop mixtures that are environmentally and economically sustainable, conserving limited water resources in the region.


Subject(s)
Carbon Cycle , Carbon Dioxide/metabolism , Glycine max/metabolism , Gossypium/metabolism , Water/metabolism , Zea mays/metabolism , Agricultural Irrigation , Crops, Agricultural/metabolism , Humidity , Mississippi
2.
J Agric Food Chem ; 61(26): 6161-6, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23789631

ABSTRACT

The degradation of environmentally long-term aged (22 years) ¹4C-labeled atrazine residues in soil stimulated by inoculation with atrazine-adapted soil from Belgium, the United States (U.S.), and Brazil at two different moisture regimes (50% WHCmax/slurried conditions) was evaluated. Inoculation of the soil containing the aged ¹4C-labeled atrazine residues with 5, 50, and 100% (w/w) Belgian, U.S., or Brazilian atrazine-adapted soil increased ¹4C-atrazine residue mineralization by a factor of 3.1-13.9, depending upon the amount of atrazine-adapted soil inocula and the moisture conditions. Aged ¹4C-atrazine residue mineralization varied between 2 and 8% for Belgian and between 1 and 2% for U.S. and Brazilian soil inoculum at 50% WHCmax but was increased under slurried conditions, accounting for 8-10% (Belgian soil), 2-7% (Brazilian soil), and 3% (American soil). The results show that an increased degradation of long-term aged ¹4C-labeled atrazine residues is possible by the transfer of atrazine-adapted soil microflora from different soils and regions to non-adapted soil.


Subject(s)
Atrazine/chemistry , Herbicides/chemistry , Pesticide Residues/chemistry , Soil Microbiology , Soil/chemistry , Atrazine/analysis , Atrazine/metabolism , Carbon Radioisotopes , Gram-Negative Bacteria/growth & development , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/growth & development , Gram-Positive Bacteria/isolation & purification , Gram-Positive Bacteria/metabolism , Herbicides/analysis , Herbicides/metabolism , Kinetics , Minerals/analysis , Minerals/chemistry , Minerals/metabolism , Pesticide Residues/analysis , Pesticide Residues/metabolism , Soil Pollutants/analysis , Soil Pollutants/chemistry , Soil Pollutants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...