Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 7(3): 191220, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32269784

ABSTRACT

Animal-robot studies can inform us about animal behaviour and inspire advances in agriculture, environmental monitoring and animal health and welfare. Currently, experimental results on how fish are affected by the presence of underwater robots are largely limited to laboratory environments with few individuals and a focus on model species. Laboratory studies provide valuable insight, but their results are not necessarily generalizable to larger scales such as marine aquaculture. This paper examines the effects of underwater robots and a human diver in a large fish aggregation within a Norwegian aquaculture facility, with the explicit purpose to improve the use of underwater robots for fish observations. We observed aquaculture salmon's reaction to the flipper-propelled robot U-CAT in a sea cage with 188 000 individuals. A significant difference in fish behaviour was found using U-CAT when compared to a thruster-driven underwater robot, Argus Mini and a human diver. Specifically, salmon were more likely to swim closer to U-CAT at a lower tailbeat frequency. Fish reactions were not significantly different when considering motor noise or when U-CAT's colour was changed from yellow to silver. No difference was observed in the distance or tailbeat frequency as a response to thruster or flipper motion, when actuated and passively floating robots were compared. These results offer insight into how large aggregations of aquaculture salmon respond to underwater robots. Furthermore, the proposed underwater video processing workflow to assess fish's response to underwater robots is simple and reproducible. This work provides a practical method to study fish-robot interactions, which can lead to improved underwater robot designs to provide more affordable, scalable and effective solutions.

2.
Rev Sci Instrum ; 87(4): 045110, 2016 04.
Article in English | MEDLINE | ID: mdl-27131710

ABSTRACT

We introduce the lateral line probe (LLP) as a measurement device for natural flows. Hydraulic surveys in rivers and hydraulic structures are currently based on time-averaged velocity measurements using propellers or acoustic Doppler devices. The long-term goal is thus to develop a sensor system, which includes spatial gradients of the flow field along a fish-shaped sensor body. Interpreting the biological relevance of a collection of point velocity measurements is complicated by the fact that fish and other aquatic vertebrates experience the flow field through highly dynamic fluid-body interactions. To collect body-centric flow data, a bioinspired fish-shaped probe is equipped with a lateral line pressure sensing array, which can be applied both in the laboratory and in the field. Our objective is to introduce a new type of measurement device for body-centric data and compare its output to estimates of conventional point-based technologies. We first provide the calibration workflow for laboratory investigations. We then provide a review of two velocity estimation workflows, independent of calibration. Such workflows are required as existing field investigations consist of measurements in environments where calibration is not feasible. The mean difference for uncalibrated LLP velocity estimates from 0 to 50 cm/s under in a closed flow tunnel and open channel flume was within 4 cm/s when compared to conventional measurement techniques. Finally, spatial flow maps in a scale vertical slot fishway are compared for the LLP, direct measurements, and 3D numerical models where it was found that the LLP provided a slight overestimation of the current velocity in the jet and underestimated the velocity in the recirculation zone.


Subject(s)
Fishes , Hydrodynamics , Animals , Calibration , Models, Theoretical , Physical Phenomena
3.
J R Soc Interface ; 11(99)2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25079867

ABSTRACT

For underwater vehicles to successfully detect and navigate turbulent flows, sensing the fluid interactions that occur is required. Fish possess a unique sensory organ called the lateral line. Sensory units called neuromasts are distributed over their body, and provide fish with flow-related information. In this study, a three-dimensional fish-shaped head, instrumented with pressure sensors, was used to investigate the pressure signals for relevant hydrodynamic stimuli to an artificial lateral line system. Unsteady wakes were sensed with the objective to detect the edges of the hydrodynamic trail and then explore and characterize the periodicity of the vorticity. The investigated wakes (Kármán vortex streets) were formed behind a range of cylinder diameter sizes (2.5, 4.5 and 10 cm) and flow velocities (9.9, 19.6 and 26.1 cm s(-1)). Results highlight that moving in the flow is advantageous to characterize the flow environment when compared with static analysis. The pressure difference from foremost to side sensors in the frontal plane provides us a useful measure of transition from steady to unsteady flow. The vortex shedding frequency (VSF) and its magnitude can be used to differentiate the source size and flow speed. Moreover, the distribution of the sensing array vertically as well as the laterally allows the Kármán vortex paired vortices to be detected in the pressure signal as twice the VSF.


Subject(s)
Biomimetic Materials , Fishes/physiology , Hydrodynamics , Lateral Line System/physiology , Models, Anatomic , Animals , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...