Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Phys Med ; 121: 103363, 2024 May.
Article in English | MEDLINE | ID: mdl-38653119

ABSTRACT

Dosimetry audits for passive motion management require dynamically-acquired measurements in a moving phantom to be compared to statically calculated planned doses. This study aimed to characterise the relationship between planning and delivery errors, and the measured dose in the Imaging and Radiation Oncology Core (IROC) thorax phantom, to assess different audit scoring approaches. Treatment plans were created using a 4DCT scan of the IROC phantom, equipped with film and thermoluminescent dosimeters (TLDs). Plans were created on the average intensity projection from all bins. Three levels of aperture complexity were explored: dynamic conformal arcs (DCAT), low-, and high-complexity volumetric modulated arcs (VMATLo, VMATHi). Simulated-measured doses were generated by modelling motion using isocenter shifts. Various errors were introduced including incorrect setup position and target delineation. Simulated-measured film doses were scored using gamma analysis and compared within specific regions of interest (ROIs) as well as the entire film plane. Positional offsets were estimated based on isodoses on the film planes, and point doses within TLD contours were compared. Motion-induced differences between planned and simulated-measured doses were evident even without introduced errors Gamma passing rates within target-centred ROIs correlated well with error-induced dose differences, while whole film passing rates did not. Isodose-based setup position measurements demonstrated high sensitivity to errors. Simulated point doses at TLD locations yielded erratic responses to introduced errors. ROI gamma analysis demonstrated enhanced sensitivity to simulated errors compared to whole film analysis. Gamma results may be further contextualized by other metrics such as setup position or maximum gamma.


Subject(s)
Movement , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted , Thorax , Thorax/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Humans , Radiometry/instrumentation , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated , Four-Dimensional Computed Tomography , Motion
2.
Med Phys ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598230

ABSTRACT

PURPOSE: As carbon ion radiotherapy increases in use, there are limited phantom materials for heterogeneous or anthropomorphic phantom measurements. This work characterized the radiological clinical equivalence of several phantom materials in a therapeutic carbon ion beam. METHODS: Eight materials were tested for radiological material-equivalence in a carbon ion beam. The materials were computed tomography (CT)-scanned to obtain Hounsfield unit (HU) values, then irradiated in a monoenergetic carbon ion beam to determine relative linear stopping power (RLSP). The corresponding HU and RLSP for each phantom material were compared to clinical carbon ion calibration curves. For absorbed dose comparison, ion chamber measurements were made in the center of a carbon ion spread-out Bragg peak (SOBP) in water and in the phantom material, evaluating whether the material perturbed the absorbed dose measurement beyond what was predicted by the HU-RLSP relationship. RESULTS: Polyethylene, solid water (Gammex and Sun Nuclear), Blue Water (Standard Imaging), and Techtron HPV had measured RLSP values that agreed within ±4.2% of RLSP values predicted by the clinical calibration curve. Measured RLSP for acrylic was 7.2% different from predicted. The agreement for balsa wood and cork varied between samples. Ion chamber measurements in the phantom materials were within 0.1% of ion chamber measurements in water for most materials (solid water, Blue Water, polyethylene, and acrylic), and within 1.9% for the rest of the materials (balsa wood, cork, and Techtron HPV). CONCLUSIONS: Several phantom materials (Blue Water, polyethylene, solid water [Gammex and Sun Nuclear], and Techtron HPV) are suitable for heterogeneous phantom measurements for carbon ion therapy. Low density materials should be carefully characterized due to inconsistencies between samples.

3.
Phys Med Biol ; 69(11)2024 May 14.
Article in English | MEDLINE | ID: mdl-38663410

ABSTRACT

Objective. This study characterized optically-stimulated luminescent dosimeter (OSLD) nanoDots for use in a therapeutic carbon beam using the Imaging and Radiation Oncology Core (IROC) framework for remote output verification.Approach. The absorbed dose correction factors for OSLD (fading, linearity, beam quality, angularity, and depletion), as defined by AAPM TG 191, were characterized for carbon beams. For the various correction factors, the effect of linear energy transfer (LET) was examined by characterizing in both a low and high LET setting.Main results. Fading was not statistically different between reference photons and carbon, nor between low and high LET beams; thus, the standard IROC-defined exponential function could be used to characterize fading. Dose linearity was characterized with a linear fit; while low and high LET carbon linearity was different, these differences were small and could be rolled into the uncertainty budget if using a single linearity correction. A linear fit between beam quality and dose-averaged LET was determined. The OSLD response at various angles of incidence was not statistically different, thus a correction factor need not be applied. There was a difference in depletion between low and high LET irradiations in a primary carbon beam, but this difference was small over the standard five readings. The largest uncertainty associated with the use of OSLDs in carbon was because of thekQcorrection factor, with an uncertainty of 6.0%. The overall uncertainty budget was 6.3% for standard irradiation conditions.Significance. OSLD nanoDot response was characterized in a therapeutic carbon beam. The uncertainty was larger than for traditional photon applications. These findings enable the use of OSLDs for carbon absorbed dose measurements, but with less accuracy than conventional OSLD audit programs.


Subject(s)
Carbon , Carbon/chemistry , Carbon/therapeutic use , Radiometry/methods , Linear Energy Transfer , Uncertainty , Optically Stimulated Luminescence Dosimetry/methods , Radiotherapy Dosage , Humans
4.
Article in English | MEDLINE | ID: mdl-38493902

ABSTRACT

PURPOSE: We conducted a multi-institutional dosimetric audit between FLASH and conventional dose rate (CONV) electron irradiations by using an anatomically realistic 3-dimensional (3D) printed mouse phantom. METHODS AND MATERIALS: A computed tomography (CT) scan of a live mouse was used to create a 3D model of bony anatomy, lungs, and soft tissue. A dual-nozzle 3D printer was used to print the mouse phantom using acrylonitrile butadiene styrene (∼1.02 g/cm3) and polylactic acid (∼1.24 g/cm3) simultaneously to simulate soft tissue and bone densities, respectively. The lungs were printed separately using lightweight polylactic acid (∼0.64 g/cm3). Hounsfield units (HU), densities, and print-to-print stability of the phantoms were assessed. Three institutions were each provided a phantom and each institution performed 2 replicates of irradiations at selected anatomic regions. The average dose difference between FLASH and CONV dose distributions and deviation from the prescribed dose were measured with radiochromic film. RESULTS: Compared with the reference CT scan, CT scans of the phantom demonstrated mass density differences of 0.10 g/cm3 for bone, 0.12 g/cm3 for lung, and 0.03 g/cm3 for soft tissue regions. Differences in HU between phantoms were <10 HU for soft tissue and bone, with lung showing the most variation (54 HU), but with minimal effect on dose distribution (<0.5%). Mean differences between FLASH and CONV decreased from the first to the second replicate (4.3%-1.2%), and differences from the prescribed dose decreased for both CONV (3.6%-2.5%) and FLASH (6.4%-2.7%). Total dose accuracy suggests consistent pulse dose and pulse number, although these were not specifically assessed. Positioning variability was observed, likely due to the absence of robust positioning aids or image guidance. CONCLUSIONS: This study marks the first dosimetric audit for FLASH using a nonhomogeneous phantom, challenging conventional calibration practices reliant on homogeneous phantoms. The comparison protocol offers a framework for credentialing multi-institutional studies in FLASH preclinical research to enhance reproducibility of biologic findings.

5.
Pract Radiat Oncol ; 14(1): e75-e85, 2024.
Article in English | MEDLINE | ID: mdl-37797883

ABSTRACT

PURPOSE: Our purpose was to identify variations in the clinical use of automatically generated contours that could be attributed to software error, off-label use, or automation bias. METHODS AND MATERIALS: For 500 head and neck patients who were contoured by an in-house automated contouring system, Dice similarity coefficient and added path length were calculated between the contours generated by the automated system and the final contours after editing for clinical use. Statistical process control was used and control charts were generated with control limits at 3 standard deviations. Contours that exceeded the thresholds were investigated to determine the cause. Moving mean control plots were then generated to identify dosimetrists who were editing less over time, which could be indicative of automation bias. RESULTS: Major contouring edits were flagged for: 1.0% brain, 3.1% brain stem, 3.5% left cochlea, 2.9% right cochlea, 4.8% esophagus, 4.1% left eye, 4.0% right eye, 2.2% left lens, 4.9% right lens, 2.5% mandible, 11% left optic nerve, 6.1% right optic nerve, 3.8% left parotid, 5.9% right parotid, and 3.0% of spinal cord contours. Identified causes of editing included unexpected patient positioning, deviation from standard clinical practice, and disagreement between dosimetrist preference and automated contouring style. A statistically significant (P < .05) difference was identified between the contour editing practice of dosimetrists, with 1 dosimetrist editing more across all organs at risk. Eighteen percent (27/150) of moving mean control plots created for 5 dosimetrists indicated the amount of contour editing was decreasing over time, possibly corresponding to automation bias. CONCLUSIONS: The developed system was used to detect statistically significant edits caused by software error, unexpected clinical use, and automation bias. The increased ability to detect systematic errors that occur when editing automatically generated contours will improve the safety of the automatic treatment planning workflow.


Subject(s)
Neck , Software , Humans , Esophagus , Parotid Gland , Radiotherapy Planning, Computer-Assisted , Organs at Risk
6.
ArXiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37808098

ABSTRACT

We conducted a multi-institutional audit of dosimetric variability between FLASH and conventional dose rate (CONV) electron irradiations by using an anatomically realistic 3D-printed mouse phantom. A CT scan of a live mouse was used to create a 3D model of bony anatomy, lungs, and soft tissue. A dual-nozzle 3D printer was used to print the mouse phantom using acrylonitrile butadiene styrene ($~1.02 g/cm^3$) and polylactic acid ($~1.24 g/cm^3$) simultaneously to simulate soft tissue and bone densities, respectively. The lungs were printed separately using lightweight polylactic acid ($~0.64 g/cm^3$). Hounsfield units (HU) and densities were compared with the reference CT scan of the live mouse. Print-to-print reproducibility of the phantom was assessed. Three institutions were each provided a phantom, and each institution performed two replicates of irradiations at selected mouse anatomic regions. The average dose difference between FLASH and CONV dose distributions and deviation from the prescribed dose were measured with radiochromic film. Compared to the reference CT scan, CT scans of the phantom demonstrated mass density differences of $0.10 g/cm^3$ for bone, $0.12 g/cm^3$ for lung, and $0.03 g/cm^3$ for soft tissue regions. Between phantoms, the difference in HU for soft tissue and bone was <10 HU from print to print. Lung exhibited the most variation (54 HU) but minimally affected dose distribution (<0.5% dose differences between phantoms). The mean difference between FLASH and CONV from the first replicate to the second decreased from 4.3% to 1.2%, and the mean difference from the prescribed dose decreased from 3.6% to 2.5% for CONV and 6.4% to 2.7% for FLASH. The framework presented here is promising for credentialing of multi-institutional studies of FLASH preclinical research to maximize the reproducibility of biological findings.

7.
Article in English | MEDLINE | ID: mdl-37565958

ABSTRACT

PURPOSE: Few reports describe the risks of late ocular toxicities after radiation therapy (RT) for childhood cancers despite their effect on quality of life. The Pediatric Normal Tissue Effects in the Clinic (PENTEC) ocular task force aims to quantify the radiation dose dependence of select late ocular adverse effects. Here, we report results concerning retinopathy, optic neuropathy, and cataract in childhood cancer survivors who received cranial RT. METHODS AND MATERIALS: A systematic literature search was performed using the PubMed, MEDLINE, and Cochrane Library databases for peer-reviewed studies published from 1980 to 2021 related to childhood cancer, RT, and ocular endpoints including dry eye, keratitis/corneal injury, conjunctival injury, cataract, retinopathy, and optic neuropathy. This initial search yielded abstracts for 2947 references, 269 of which were selected as potentially having useful outcomes and RT data. Data permitting, treatment and outcome data were used to generate normal tissue complication probability models. RESULTS: We identified sufficient RT data to generate normal tissue complication probability models for 3 endpoints: retinopathy, optic neuropathy, and cataract formation. Based on limited data, the model for development of retinopathy suggests 5% and 50% risk of toxicity at 42 and 62 Gy, respectively. The model for development of optic neuropathy suggests 5% and 50% risk of toxicity at 57 and 64 Gy, respectively. More extensive data were available to evaluate the risk of cataract, separated into self-reported versus ophthalmologist-diagnosed cataract. The models suggest 5% and 50% risk of self-reported cataract at 12 and >40 Gy, respectively, and 50% risk of ophthalmologist-diagnosed cataract at 9 Gy (>5% long-term risk at 0 Gy in patients treated with chemotherapy only). CONCLUSIONS: Radiation dose effects in the eye are inadequately studied in the pediatric population. Based on limited published data, this PENTEC comprehensive review establishes relationships between RT dose and subsequent risks of retinopathy, optic neuropathy, and cataract formation.

8.
Article in English | MEDLINE | ID: mdl-37003845

ABSTRACT

PURPOSE: We describe the methods used to estimate the accuracy of dosimetric data found in literature sources used to construct the Pediatric Normal Tissue Effects in the Clinic (PENTEC) dose-response models, summarize these findings of each organ-specific task force, describe some of the dosimetric challenges and the extent to which these efforts affected the final modeling results, and provide guidance on the interpretation of the dose-response results given the various dosimetric uncertainties. METHODS AND MATERIALS: Each of the PENTEC task force medical physicists reviewed all the journal articles used for dose-response modeling to identify, categorize, and quantify dosimetric uncertainties. These uncertainties fell into 6 broad categories. A uniform nomenclature was developed for describing the "dosimetric quality" of the articles used in the PENTEC reviews. Among the multidisciplinary experts in the PENTEC effort, the medical physicists were charged with the dosimetric evaluation, as they are most expert in this subject. RESULTS: The percentage dosimetric uncertainty was estimated for each late effect endpoint for all PENTEC organ reports. Twelve specific sources of dose uncertainty were identified related to the 6 broad categories. The most common reason for organ dose uncertainty was that prescribed dose rather than organ dose was reported. Percentage dose uncertainties ranged from 5% to 200%. Systematic uncertainties were used to correct the dose component of the models. Random uncertainties were also described in each report and in some cases used to modify dose axis error bars. In addition, the potential effects of dose binning were described. CONCLUSIONS: PENTEC reports are designed to provide guidance to radiation oncologists and treatment planners for organ dose constraints. It is critical that these dose constraint recommendations are as accurate as possible, acknowledging the large error bars for many. Achieving this accuracy is important as it enables clinicians to better balance target dose coverage with risk of late effects. Evidence-based dose constraints for pediatric patients have been lacking and, in this regard, PENTEC fills an important unmet need. One must be aware of the limitations of our recommendations, and that for some organ systems, large uncertainties exist in the dose-response model because of clinical endpoint uncertainty, dosimetric uncertainty, or both.

9.
Int J Radiat Oncol Biol Phys ; 116(5): 1202-1217, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37121362

ABSTRACT

FLASH radiation therapy (FLASH-RT), delivered with ultrahigh dose rate (UHDR), may allow patients to be treated with less normal tissue toxicity for a given tumor dose compared with currently used conventional dose rate. Clinical trials are being carried out and are needed to test whether this improved therapeutic ratio can be achieved clinically. During the clinical trials, quality assurance and credentialing of equipment and participating sites, particularly pertaining to UHDR-specific aspects, will be crucial for the validity of the outcomes of such trials. This report represents an initial framework proposed by the NRG Oncology Center for Innovation in Radiation Oncology FLASH working group on quality assurance of potential UHDR clinical trials and reviews current technology gaps to overcome. An important but separate consideration is the appropriate design of trials to most effectively answer clinical and scientific questions about FLASH. This paper begins with an overview of UHDR RT delivery methods. UHDR beam delivery parameters are then covered, with a focus on electron and proton modalities. The definition and control of safe UHDR beam delivery and current and needed dosimetry technologies are reviewed and discussed. System and site credentialing for large, multi-institution trials are reviewed. Quality assurance is then discussed, and new requirements are presented for treatment system standard analysis, patient positioning, and treatment planning. The tables and figures in this paper are meant to serve as reference points as we move toward FLASH-RT clinical trial performance. Some major questions regarding FLASH-RT are discussed, and next steps in this field are proposed. FLASH-RT has potential but is associated with significant risks and complexities. We need to redefine optimization to focus not only on the dose but also on the dose rate in a manner that is robust and understandable and that can be prescribed, validated, and confirmed in real time. Robust patient safety systems and access to treatment data will be critical as FLASH-RT moves into the clinical trials.


Subject(s)
Credentialing , Electrons , Humans , Health Facilities , Patient Positioning , Technology , Radiotherapy Dosage
10.
J Appl Clin Med Phys ; 24(8): e13995, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37073484

ABSTRACT

PURPOSE: Hazard scenarios were created to assess and reduce the risk of planning errors in automated planning processes. This was accomplished through iterative testing and improvement of examined user interfaces. METHODS: Automated planning requires three user inputs: a computed tomography (CT), a prescription document, known as the service request, and contours. We investigated the ability of users to catch errors that were intentionally introduced into each of these three stages, according to an FMEA analysis. Five radiation therapists each reviewed 15 patient CTs, containing three errors: inappropriate field of view, incorrect superior border, and incorrect identification of isocenter. Four radiation oncology residents reviewed 10 service requests, containing two errors: incorrect prescription and treatment site. Four physicists reviewed 10 contour sets, containing two errors: missing contour slices and inaccurate target contour. Reviewers underwent video training prior to reviewing and providing feedback for various mock plans. RESULTS: Initially, 75% of hazard scenarios were detected in the service request approval. The visual display of prescription information was then updated to improve the detectability of errors based on user feedback. The change was then validated with five new radiation oncology residents who detected 100% of errors present. 83% of the hazard scenarios were detected in the CT approval portion of the workflow. For the contour approval portion of the workflow none of the errors were detected by physicists, indicating this step will not be used for quality assurance of contours. To mitigate the risk from errors that could occur at this step, radiation oncologists must perform a thorough review of contour quality prior to final plan approval. CONCLUSIONS: Hazard testing was used to pinpoint the weaknesses of an automated planning tool and as a result, subsequent improvements were made. This study identified that not all workflow steps should be used for quality assurance and demonstrated the importance of performing hazard testing to identify points of risk in automated planning tools.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed , Humans , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed/methods
11.
Radiother Oncol ; 182: 109577, 2023 05.
Article in English | MEDLINE | ID: mdl-36841341

ABSTRACT

AIM OF THE STUDY: To elucidate the important factors and their interplay that drive performance on IMRT phantoms from the Imaging and Radiation Oncology Core (IROC). METHODS: IROC's IMRT head and neck phantom contains two targets and an organ at risk. Point and 2D dose are measured by TLDs and film, respectively. 1,542 irradiations between 2012-2020 were retrospectively analyzed based on output parameters, complexity metrics, and treatment parameters. Univariate analysis compared parameters based on pass/fail, and random forest modeling was used to predict output parameters and determine the underlying importance of the variables. RESULTS: The average phantom pass rate was 92% and has not significantly improved over time. The step-and-shoot irradiation technique had significantly lower pass rates that significantly affected other treatment parameters' pass rates. The complexity of plans has significantly increased with time, and all aperture-based complexity metrics (except MCS) were associated with the probability of failure. Random forest-based prediction of failure had an accuracy of 98% on held-out test data not used in model training. While complexity metrics were the most important contributors, the specific metric depended on the set of treatment parameters used during the irradiation. CONCLUSION: With the prevalence of errors in radiotherapy, understanding which parameters affect treatment delivery is vital to improve patient treatment. Complexity metrics were strongly predictive of irradiation failure; however, they are dependent on the specific treatment parameters. In addition, the use of one complexity metric is insufficient to monitor all aspects of the treatment plan.


Subject(s)
Radiation Oncology , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies , Radiotherapy Planning, Computer-Assisted/methods , Phantoms, Imaging , Radiotherapy Dosage , Machine Learning
12.
Radiother Oncol ; 182: 109494, 2023 05.
Article in English | MEDLINE | ID: mdl-36708923

ABSTRACT

BACKGROUND AND PURPOSE: The Global Clinical Trials RTQA Harmonization Group (GHG) set out to evaluate and prioritize clinical trial quality assurance. METHODS: The GHG compiled a list of radiotherapy quality assurance (QA) tests performed for proton and photon therapy clinical trials. These tests were compared between modalities to assess whether there was a need for different types of assessments per modality. A failure modes and effects analysis (FMEA) was performed to assess the risk of each QA failure. RESULTS: The risk analysis showed that proton and photon therapy shared four out of five of their highest-risk failures (end-to-end anthropomorphic phantom test, phantom tests using respiratory motion, pre-treatment patient plan review of contouring/outlining, and on-treatment/post-treatment patient plan review of dosimetric coverage). While similar trends were observed, proton therapy had higher risk failures, driven by higher severity scores. A sub-analysis of occurrence × severity scores identified high-risk scores to prioritize for improvements in RTQA detectability. A novel severity scaler was introduced to account for the number of patients affected by each failure. This scaler did not substantially alter the ranking of tests, but it elevated the QA program evaluation to the top 20th percentile. This is the first FMEA performed for clinical trial quality assurance. CONCLUSION: The identification of high-risk errors associated with clinical trials is valuable to prioritize and reduce errors in radiotherapy and improve the quality of trial data and outcomes, and can be applied to optimize clinical radiotherapy QA.


Subject(s)
Healthcare Failure Mode and Effect Analysis , Protons , Humans , Photons/therapeutic use , Radiometry , Risk Assessment
13.
Int J Radiat Oncol Biol Phys ; 114(3): 383, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36152643
14.
Radiother Oncol ; 176: 118-126, 2022 11.
Article in English | MEDLINE | ID: mdl-36063983

ABSTRACT

PURPOSE: The purposes of this study were to develop and integrate a colorectal model that incorporates anatomical variations of pediatric patients into the age-scalable MD Anderson Late Effects (MDA-LE) computational phantom, and validate the model for pediatric radiation therapy (RT) dose reconstructions. METHODS: Colorectal contours were manually derived from whole-body non-contrast computed tomography (CT) scans of 114 pediatric patients (age range: 2.1-21.6 years, 74 males, 40 females). One contour was used for an anatomical template, 103 for training and 10 for testing. Training contours were used to create a colorectal principal component analysis (PCA)-based statistical shape model (SSM) to extract the population's dominant deformations. The SSM was integrated into the MDA-LE phantom. Geometric accuracy was assessed between patient-specific and SSM contours using several overlap metrics. Two alternative colorectal shapes were generated using the first 17 dominant modes of the PCA-based SSM. Dosimetric accuracy was assessed by comparing colorectal doses from test patients' CT-based RT plans (ground truth) with reconstructed doses for the mean and two alternative models in age-matched MDA-LE phantoms. RESULTS: When using all 103 PCA modes, the mean (min-max) Dice similarity coefficient, distance-to-agreement and Hausdorff distance between the patient-specific and reconstructed contours for the test patients were 0.89 (0.85-0.91), 2.1 mm (1.7-3.0), and 8.6 mm (5.7-14.3), respectively. The average percent difference between reconstructed and ground truth mean and maximum colorectal doses for the mean (alternative 1, 2) model were 6.3% (8.1%, 6.1%) and 4.4% (4.3%, 4.7%), respectively. CONCLUSIONS: We developed, validated and integrated a colorectal PCA-based SSM into the MDA-LE phantom and demonstrated its dosimetric performance for accurate pediatric RT dose reconstruction.


Subject(s)
Adult Survivors of Child Adverse Events , Cancer Survivors , Colorectal Neoplasms , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Young Adult , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/radiotherapy , Phantoms, Imaging , Radiometry/methods , Tomography, X-Ray Computed/methods
15.
J Appl Clin Med Phys ; 23(9): e13641, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35950259

ABSTRACT

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. While must is the term to be used in the guidelines, if an entity that adopts the guideline has shall as the preferred term, the AAPM considers that must and shall have the same meaning. Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.


Subject(s)
Electrons , Radiation Oncology , Humans , Photons , Physics , United States
16.
Med Phys ; 49(9): 5742-5751, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35866442

ABSTRACT

PURPOSE: To fully automate CT-based cervical cancer radiotherapy by automating contouring and planning for three different treatment techniques. METHODS: We automated three different radiotherapy planning techniques for locally advanced cervical cancer: 2D 4-field-box (4-field-box), 3D conformal radiotherapy (3D-CRT), and volumetric modulated arc therapy (VMAT). These auto-planning algorithms were combined with a previously developed auto-contouring system. To improve the quality of the 4-field-box and 3D-CRT plans, we used an in-house, field-in-field (FIF) automation program. Thirty-five plans were generated for each technique on CT scans from multiple institutions and evaluated by five experienced radiation oncologists from three different countries. Every plan was reviewed by two of the five radiation oncologists and scored using a 5-point Likert scale. RESULTS: Overall, 87%, 99%, and 94% of the automatically generated plans were found to be clinically acceptable without modification for the 4-field-box, 3D-CRT, and VMAT plans, respectively. Some customizations of the FIF configuration were necessary on the basis of radiation oncologist preference. Additionally, in some cases, it was necessary to renormalize the plan after it was generated to satisfy radiation oncologist preference. CONCLUSION: Approximately, 90% of the automatically generated plans were clinically acceptable for all three planning techniques. This fully automated planning system has been implemented into the radiation planning assistant for further testing in resource-constrained radiotherapy departments in low- and middle-income countries.


Subject(s)
Radiotherapy, Conformal , Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Female , Humans , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Radiotherapy, Intensity-Modulated/methods , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy
18.
J Appl Clin Med Phys ; 23(8): e13647, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35580067

ABSTRACT

PURPOSE: To determine the most accurate similarity metric when using an independent system to verify automatically generated contours. METHODS: A reference autocontouring system (primary system to create clinical contours) and a verification autocontouring system (secondary system to test the primary contours) were used to generate a pair of 6 female pelvic structures (UteroCervix [uterus + cervix], CTVn [nodal clinical target volume (CTV)], PAN [para-aortic lymph nodes], bladder, rectum, and kidneys) on 49 CT scans from our institution and 38 from other institutions. Additionally, clinically acceptable and unacceptable contours were manually generated using the 49 internal CT scans. Eleven similarity metrics (volumetric Dice similarity coefficient (DSC), Hausdorff distance, 95% Hausdorff distance, mean surface distance, and surface DSC with tolerances from 1 to 10 mm) were calculated between the reference and the verification autocontours, and between the manually generated and the verification autocontours. A support vector machine (SVM) was used to determine the threshold that separates clinically acceptable and unacceptable contours for each structure. The 11 metrics were investigated individually and in certain combinations. Linear, radial basis function, sigmoid, and polynomial kernels were tested using the combinations of metrics as inputs for the SVM. RESULTS: The highest contouring error detection accuracies were 0.91 for the UteroCervix, 0.90 for the CTVn, 0.89 for the PAN, 0.92 for the bladder, 0.95 for the rectum, and 0.97 for the kidneys and were achieved using surface DSCs with a thickness of 1, 2, or 3 mm. The linear kernel was the most accurate and consistent when a combination of metrics was used as an input for the SVM. However, the best model accuracy from the combinations of metrics was not better than the best model accuracy from a surface DSC as an input. CONCLUSIONS: We distinguished clinically acceptable contours from clinically unacceptable contours with an accuracy higher than 0.9 for the targets and critical structures in patients with cervical cancer; the most accurate similarity metric was surface DSC with a thickness of 1, 2, or 3 mm.


Subject(s)
Deep Learning , Algorithms , Female , Humans , Lymph Nodes , Pelvis , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed/methods
19.
Med Phys ; 49(3): 1911-1923, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35066889

ABSTRACT

PURPOSE: To provide percentage depth dose (PDD) data along the central axis for dosimetry calculations in small-animal radiation biology experiments performed in cabinet irradiators. The PDDs are provided as a function of source-to-surface distance (SSD), field size, and animal size. METHODS: The X-ray tube designs for four biological cabinet irradiators, the RS2000, RT250, MultiRad350, and XRAD320, were simulated using the BEAMnrc Monte Carlo code to generate 160, 200, 250, and 320 kVp photon beams, respectively. The 320 kVp beam was simulated with two filtrations: a soft F1 aluminium filter and a hard F2 thoraeus filter made of aluminium, tin, and copper. Beams were collimated into circular fields with diameters of 0.5-10 cm at SSDs of 10-60 cm. Monte Carlo dose calculations in 1-5-cm diameter homogeneous (soft tissue) small-animal phantoms as well as in heterogeneous phantoms with 3-mm diameter cylindrical lung and bone inserts (rib and cortical bone) were performed using DOSXYZnrc. The calculated depth doses in three test-cases were estimated by applying SSD, field size, and animal size correction factors to a reference case (40-cm SSD, 1-cm field, and 5-cm animal size), and these results were compared with the specifically simulated (i.e., expected) doses to assess the accuracy of this method. Dosimetry for two test-case scenarios of 160 and 250 kVp beams (representative of end-user beam qualities) was also performed, whereby the simulated PDDs at two different depths were compared with the results based on the interpolation from reference data. RESULTS: The depth doses for three test-cases calculated at 200, 320 kVp F1, and 320 kVp F2 with half value layers (HVLs) ranging from ∼0.6 to 3.6 mm Cu, agreed well with the expected doses, yielding dose differences of 1.2%, 0.1%, and 1.0%, respectively. The two end-user test-cases for 160 and 250 kVp beams with respective HVLs of ∼0.8 and 1.8 mm Cu yielded dose differences of 1.4% and 3.2% between the simulated and the interpolated PDDs. The dose increase at the bone-tissue proximal interface ranged from 1.2 to 2.5 times the dose in soft tissue for rib and 1.3 to 3.7 times for cortical bone. The dose drop-off at 1-cm depth beyond the bone ranged from 1.3% to 6.0% for rib and 3.2% to 11.7% for cortical bone. No drastic dose perturbations occurred in the presence of lung, with lung-tissue interface dose of >99% of soft tissue dose and <3% dose increase at 1-cm depth beyond lung. CONCLUSIONS: The developed dose estimation method can be used to translate the measured dose at a point to dose at any depth in small-animal phantoms, making it feasible for preclinical calculation of dose distributions in animals irradiated with cabinet-style irradiators. The dosimetric impact of bone must be accurately quantified as dramatic dose perturbations at and beyond the bone interfaces can occur due to the relative importance of the photoelectric effect at kilovoltage energies. These results will help improve dosimetric accuracy in preclinical experiments.


Subject(s)
Radiobiology , Radiometry , Animals , Monte Carlo Method , Phantoms, Imaging , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods
20.
Biomed Phys Eng Express ; 8(2)2022 02 01.
Article in English | MEDLINE | ID: mdl-34874300

ABSTRACT

Purpose.Radiation epidemiology studies of childhood cancer survivors treated in the pre-computed tomography (CT) era reconstruct the patients' treatment fields on computational phantoms. For such studies, the phantoms are commonly scaled to age at the time of radiotherapy treatment because age is the generally available anthropometric parameter. Several reference size phantoms are used in such studies, but reference size phantoms are only available at discrete ages (e.g.: newborn, 1, 5, 10, 15, and Adult). When such phantoms are used for RT dose reconstructions, the nearest discrete-aged phantom is selected to represent a survivor of a specific age. In this work, we (1) conducted a feasibility study to scale reference size phantoms at discrete ages to various other ages, and (2) evaluated the dosimetric impact of using exact age-scaled phantoms as opposed to nearest age-matched phantoms at discrete ages.Methods.We have adopted the University of Florida/National Cancer Institute (UF/NCI) computational phantom library for our studies. For the feasibility study, eight male and female reference size UF/NCI phantoms (5, 10, 15, and 35 years) were downscaled to fourteen different ages which included next nearest available lower discrete ages (1, 5, 10 and 15 years) and the median ages at the time of RT for Wilms' tumor (3.9 years), craniospinal (8.0 years), and all survivors (9.1 years old) in the Childhood Cancer Survivor Study (CCSS) expansion cohort treated with RT. The downscaling was performed using our in-house age scaling functions (ASFs). To geometrically validate the scaling, Dice similarity coefficient (DSC), mean distance to agreement (MDA), and Euclidean distance (ED) were calculated between the scaled and ground-truth discrete-aged phantom (unscaled UF/NCI) for whole-body, brain, heart, liver, pancreas, and kidneys. Additionally, heights of the scaled phantoms were compared with ground-truth phantoms' height, and the Centers for Disease Control and Prevention (CDC) reported 50th percentile height. Scaled organ masses were compared with ground-truth organ masses. For the dosimetric assessment, one reference size phantom and seventeen body-size dependent 5-year-old phantoms (9 male and 8 female) of varying body mass indices (BMI) were downscaled to 3.9-year-old dimensions for two different radiation dose studies. For the first study, we simulated a 6 MV photon right-sided flank field RT plan on a reference size 5-year-old and 3.9-year-old (both of healthy BMI), keeping the field size the same in both cases. Percent of volume receiving dose ≥15 Gy (V15) and the mean dose were calculated for the pancreas, liver, and stomach. For the second study, the same treatment plan, but with patient anatomy-dependent field sizes, was simulated on seventeen body-size dependent 5- and 3.9-year-old phantoms with varying BMIs. V15, mean dose, and minimum dose received by 1% of the volume (D1), and by 95% of the volume (D95) were calculated for pancreas, liver, stomach, left kidney (contralateral), right kidney, right and left colons, gallbladder, thoracic vertebrae, and lumbar vertebrae. A non-parametric Wilcoxon rank-sum test was performed to determine if the dose to organs of exact age-scaled and nearest age-matched phantoms were significantly different (p < 0.05).Results.In the feasibility study, the best DSCs were obtained for the brain (median: 0.86) and whole-body (median: 0.91) while kidneys (median: 0.58) and pancreas (median: 0.32) showed poorer agreement. In the case of MDA and ED, whole-body, brain, and kidneys showed tighter distribution and lower median values as compared to other organs. For height comparison, the overall agreement was within 2.8% (3.9 cm) and 3.0% (3.2 cm) of ground-truth UF/NCI and CDC reported 50th percentile heights, respectively. For mass comparison, the maximum percent and absolute differences between the scaled and ground-truth organ masses were within 31.3% (29.8 g) and 211.8 g (16.4%), respectively (across all ages). In the first dosimetric study, absolute difference up to 6% and 1.3 Gy was found for V15and mean dose, respectively. In the second dosimetric study, V15and mean dose were significantly different (p < 0.05) for all studied organs except the fully in-beam organs. D1and D95were not significantly different for most organs (p > 0.05).Conclusion.We have successfully evaluated our ASFs by scaling UF/NCI computational phantoms from one age to another age, which demonstrates the feasibility of scaling any CT-based anatomy. We have found that dose to organs of exact age-scaled and nearest aged-matched phantoms are significantly different (p < 0.05) which indicates that using the exact age-scaled phantoms for retrospective dosimetric studies is a better approach.


Subject(s)
Photons , Radiometry , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Phantoms, Imaging , Radiometry/methods , Retrospective Studies , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...