Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 11: 1321202, 2024.
Article in English | MEDLINE | ID: mdl-38420205

ABSTRACT

Introduction: It has been recognized that capripoxvirus infections have a strong cutaneous tropism with the manifestation of skin lesions in the form of nodules and scabs in the respective hosts, followed by necrosis and sloughing off. Considering that the skin microbiota is a complex community of commensal bacteria, fungi and viruses that are influenced by infections leading to pathological states, there is no evidence on how the skin microbiome is affected during capripoxvirus pathogenesis. Methods: In this study, shotgun metagenomic sequencing was used to investigate the microbiome in pox lesions from hosts infected with lumpy skin disease virus and sheep pox virus. Results: The analysis revealed a high degree of variability in bacterial community structures across affected skin samples, indicating the importance of specific commensal microorganisms colonizing individual hosts. The most common and abundant bacteria found in scab samples were Fusobacterium necrophorum, Streptococcus dysgalactiae, Helcococcus ovis and Trueperella pyogenes, irrespective of host. Bacterial reads belonging to the genera Moraxella, Mannheimia, Corynebacterium, Staphylococcus and Micrococcus were identified. Discussion: This study is the first to investigate capripox virus-associated changes in the skin microbiome using whole-genome metagenomic profiling. The findings will provide a basis for further investigation into capripoxvirus pathogenesis. In addition, this study highlights the challenge of selecting an optimal bioinformatics approach for the analysis of metagenomic data in clinical and veterinary practice. For example, direct classification of reads using a kmer-based algorithm resulted in a significant number of systematic false positives, which may be attributed to the peculiarities of the algorithm and database selection. On the contrary, the process of de novo assembly requires a large number of target reads from the symbiotic microbial community. In this work, the obtained sequencing data were processed by three different approaches, including direct classification of reads based on k-mers, mapping of reads to a marker gene database, and de novo assembly and binning of metagenomic contigs. The advantages and disadvantages of these techniques and their practicality in veterinary settings are discussed in relation to the results obtained.

2.
Biology (Basel) ; 12(10)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37887020

ABSTRACT

The Barents Sea is one of the most rapidly changing Arctic regions, with an unprecedented sea ice decline and increase in water temperature and salinity. We have studied the diversity of prokaryotic communities using 16S metabarcoding in the western and northeastern parts of the Barents Sea along the Kola Section and the section from Novaya Zemlya to Franz Joseph Land. The hypothesis-independent clustering method revealed the existence of two distinct types of communities. The most common prokaryotic taxa were shared between two types of communities, but their relative abundance was different. It was found that the geographic location of the sampling sites explained more than 30% of the difference between communities, while no statistically significant correlation between environmental parameters and community composition was found. The representatives of the Psychrobacter, Sulfitobacter and Polaribacter genera were dominant in samples from both types of communities. The first type of community was also dominated by members of Halomonas, Pseudoalteromonas, Planococcaceae and an unclassified representative of the Alteromonadaceae family. The second type of community also had a significant proportion of Nitrincolaceae, SAR92, SAR11 Clade I, NS9, Cryomorphaceae and SUP05 representatives. The origin of these communities can be explained by the influence of environmental factors or by the different origins of water masses. This research highlights the importance of studying biogeographic patterns in the Barents Sea in comparison with those in the North Atlantic and Arctic Ocean prokaryote communities.

3.
Microorganisms ; 11(8)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37630507

ABSTRACT

The Buryatian horse is an ancient breed and, as an indigenous breed, they have unique adaptive abilities to use scarce pastures, graze in winter, and survive in harsh conditions with minimal human care. In this study, fecal microbiota of Buryatian horses grazing in the warm and cold seasons were investigated using NGS technology on the Illumina MiSeq platform. We hypothesized that the composition of microbial communities in the feces of horses maintained on pasture would change in the different seasons, depending on the grass availability and different plant diets. We conducted microhistological fecal studies of horse diet composition on steppe pasture. The alpha diversity analysis showed horses had a more abundant and diverse gut microbiota in summer. There were significant effects on the beta diversity of microbial families, which were clustered by the warm and cold season in a principal coordinate analysis (PCoA), with 45% of the variation explained by two principal coordinates. This clustering by season was further confirmed by the significant differences observed in the relative abundances of microbial families and genera. The obtained results can serve as an experimental substantiation for further study of the impact of pasture grasses, which have a pharmacological effect, on the diversity of the gut microbiome and horse health.

4.
Microorganisms ; 11(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36838447

ABSTRACT

Cryogenic soils are the most important terrestrial carbon reservoir on the planet. However, the relationship between soil microbial diversity and CO2 emission by cryogenic soils is poorly studied. This is especially important in the context of rising temperatures in the high Arctic which can lead to the activation of microbial processes in soils and an increase in carbon input from cryogenic soils into the atmosphere. Here, using high-throughput sequencing of 16S rRNA gene amplicons, we analyzed microbial community composition and diversity metrics in relation to soil carbon dioxide emission, water-extractable organic carbon and microbial biomass carbon in the soils of the Barents Sea archipelagos, Novaya Zemlya and Franz Josef Land. It was found that the highest diversity and CO2 emission were observed on the Hooker and Heiss Islands of the Franz Josef Land archipelago, while the diversity and CO2 emission levels were lower on Novaya Zemlya. Soil moisture and temperature were the main parameters influencing the composition of soil microbial communities on both archipelagos. The data obtained show that CO2 emission levels and community diversity on the studied islands are influenced mostly by a number of local factors, such as soil moisture, microclimatic conditions, different patterns of vegetation and fecal input from animals such as reindeer.

SELECTION OF CITATIONS
SEARCH DETAIL
...