Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
3.
J Clin Invest ; 134(4)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38127441

ABSTRACT

Lymphangioleiomyomatosis (LAM) is a progressive cystic lung disease caused by tuberous sclerosis complex 1/2 (TSC1/2) gene mutations in pulmonary mesenchymal cells, resulting in activation of the mechanistic target of rapamycin complex 1 (mTORC1). A subset of patients with LAM develop pulmonary vascular remodeling and pulmonary hypertension. Little, however, is known regarding how LAM cells communicate with endothelial cells (ECs) to trigger vascular remodeling. In end-stage LAM lung explants, we identified EC dysfunction characterized by increased EC proliferation and migration, defective angiogenesis, and dysmorphic endothelial tube network formation. To model LAM disease, we used an mTORC1 gain-of-function mouse model with a Tsc2 KO (Tsc2KO) specific to lung mesenchyme (Tbx4LME-Cre Tsc2fl/fl), similar to the mesenchyme-specific genetic alterations seen in human disease. As early as 8 weeks of age, ECs from mice exhibited marked transcriptomic changes despite an absence of morphological changes to the distal lung microvasculature. In contrast, 1-year-old Tbx4LME-Cre Tsc2fl/fl mice spontaneously developed pulmonary vascular remodeling with increased medial thickness. Single-cell RNA-Seq of 1-year-old mouse lung cells identified paracrine ligands originating from Tsc2KO mesenchyme, which can signal through receptors in arterial ECs. These ECs had transcriptionally altered genes including those in pathways associated with blood vessel remodeling. The proposed pathophysiologic mesenchymal ligand-EC receptor crosstalk highlights the importance of an altered mesenchymal cell/EC axis in LAM and other hyperactive mTORC1-driven diseases. Since ECs in patients with LAM and in Tbx4LME-Cre Tsc2fl/fl mice did not harbor TSC2 mutations, our study demonstrates that constitutively active mTORC1 lung mesenchymal cells orchestrated dysfunctional EC responses that contributed to pulmonary vascular remodeling.


Subject(s)
Lymphangioleiomyomatosis , Tuberous Sclerosis Complex 2 Protein , Tuberous Sclerosis , Tumor Suppressor Proteins , Animals , Humans , Infant , Mice , Endothelial Cells/metabolism , Lung/metabolism , Lymphangioleiomyomatosis/genetics , Lymphangioleiomyomatosis/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mesoderm/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Vascular Remodeling/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/metabolism , In Vitro Techniques
4.
Eur Respir Rev ; 32(169)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37758276

ABSTRACT

Lymphangioleiomyomatosis (LAM) is a cystic lung disease of women resulting from mutations in tuberous sclerosis complex (TSC) genes that suppress the mammalian target of rapamycin complex 1 (mTORC1) pathway. mTORC1 activation enhances a plethora of anabolic cellular functions, mainly via the activation of mRNA translation through stimulation of ribosomal protein S6 kinase (S6K1)/ribosomal protein S6 (S6) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1)/eukaryotic translation initiation factor 4E (eIF4E). Rapamycin (sirolimus), an allosteric inhibitor of mTORC1, stabilises lung function in many but not all LAM patients and, upon cessation of the drug, disease progression resumes. At clinically tolerable concentrations, rapamycin potently inhibits the ribosomal S6K1/S6 translation ribosome biogenesis and elongation axis, but not the translation 4E-BP1/eIF4E initiation axis. In this mini-review, we propose that inhibition of mTORC1-driven translation initiation is an obvious but underappreciated therapeutic strategy in LAM, TSC and other mTORC1-driven diseases.


Subject(s)
Lymphangioleiomyomatosis , Female , Humans , Lymphangioleiomyomatosis/diagnosis , Lymphangioleiomyomatosis/drug therapy , Lymphangioleiomyomatosis/genetics , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Sirolimus/pharmacology
5.
bioRxiv ; 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37398026

ABSTRACT

Lymphangioleiomyomatosis (LAM) is a debilitating, progressive lung disease with few therapeutic options, largely due to a paucity of mechanistic knowledge of disease pathogenesis. Lymphatic endothelial cells (LECs) are known to envelope and invade clusters of LAM-cells, comprising of smooth muscle α-actin and/or HMB-45 positive "smooth muscle-like cells" however the role of LECs in LAM pathogenesis is still unknown. To address this critical knowledge gap, we investigated wether LECs interact with LAM-cells to augment their metastatic behaviour of LAM-cells. We performed in situ spatialomics and identified a core of transcriptomically related cells within the LAM nodules. Pathway analysis highlights wound and pulmonary healing, VEGF signaling, extracellular matrix/actin cytoskeletal regulating and the HOTAIR regulatory pathway enriched in the LAM Core cells. We developed an organoid co-culture model combining primary LAM-cells with LECs and applied this to evaluate invasion, migration, and the impact of Sorafenib, a multi-kinase inhibitor. LAM-LEC organoids had significantly higher extracellular matrix invasion, decreased solidity and a greater perimeter, reflecting increased invasion compared to non-LAM control smooth muscle cells. Sorafenib significantly inhibited this invasion in both LAM spheroids and LAM-LEC organoids compared to their respective controls. We identified TGFß1ι1, a molecular adapter coordinating protein-protein interactions at the focal adhesion complex and known to regulate VEGF, TGFß and Wnt signalling, as a Sorafenib-regulated kinase in LAM-cells. In conclusion we have developed a novel 3D co-culture LAM model and have demonstrated the effectiveness of Sorafenib to inhibit LAM-cell invasion, identifying new avenues for therapeutic intervention.

6.
Thorax ; 78(1): 85-87, 2023 01.
Article in English | MEDLINE | ID: mdl-36599466

ABSTRACT

Lymphangioleiomyomatosis (LAM) is a rare lung disease of women, causing cystic remodelling of the lung and progressive respiratory failure. The cellular composition, microenvironment and cellular interactions within the LAM lesion remain unclear. To facilitate data sharing and collaborative LAM research, we performed an integrative analysis of single-cell data compiled from lung, uterus and kidney of patients with LAM from three research centres and developed an LAM Cell Atlas (LCA) Web-Portal. The LCA offers a variety of interactive options for investigators to search, visualise and reanalyse comprehensive single-cell multiomics data sets to reveal dysregulated genetic programmes at transcriptomic, epigenomic and cell-cell connectome levels.


Subject(s)
Lung Diseases , Lung Neoplasms , Lymphangioleiomyomatosis , Respiratory Insufficiency , Humans , Female , Lymphangioleiomyomatosis/genetics , Lung Diseases/pathology , Lung/pathology , Transcriptome , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Tumor Microenvironment
7.
Front Pharmacol ; 13: 923814, 2022.
Article in English | MEDLINE | ID: mdl-35860017

ABSTRACT

Despite the power of antibiotics, bacterial infections remain a major killer, due to antibiotic resistance and hosts with dysregulated immune systems. We and others have been developing drug-loaded nanoparticles that home to the sites of infection and inflammation via engineered tropism for neutrophils, the first-responder leukocytes in bacterial infections. Here, we examined how a member of a broad class of neutrophil-tropic nanoparticles affects neutrophil behavior, specifically questioning whether the nanoparticles attenuate an important function, bacterial phagocytosis. We found these nanoparticles actually augment phagocytosis of non-opsonized bacteria, increasing it by ∼50%. We showed this augmentation of phagocytosis is likely co-opting an evolved response, as opsonized bacteria also augment phagocytosis of non-opsonized bacteria. Enhancing phagocytosis of non-opsonized bacteria may prove particularly beneficial in two clinical situations: in hypocomplementemic patients (meaning low levels of the main bacterial opsonins, complement proteins, seen in conditions such as neonatal sepsis and liver failure) or for bacteria that are largely resistant to complement opsonization (e.g., Neisseria). Additionally, we observe that; 1) prior treatment with bacteria augments neutrophil uptake of neutrophil-tropic nanoparticles; 2) neutrophil-tropic nanoparticles colocalize with bacteria inside of neutrophils. The observation that neutrophil-tropic nanoparticles enhance neutrophil phagocytosis and localize with bacteria inside neutrophils suggests that these nanoparticles will serve as useful carriers for drugs to ameliorate bacterial diseases.

8.
Front Oncol ; 11: 644592, 2021.
Article in English | MEDLINE | ID: mdl-34178631

ABSTRACT

BACKGROUND: Mutation in a tuberous sclerosis gene (TSC1 or 2) leads to continuous activation of the mammalian target of rapamycin (mTOR). mTOR activation alters cellular including vitamin A metabolism and retinoic acid receptor beta (RARß) expression. The goal of the present study was to investigate the molecular connection between vitamin A metabolism and TSC mutation. We also aimed to investigate the effect of the FDA approved drug rapamycin and the vitamin A metabolite retinoic acid (RA) in cell lines with TSC mutation. METHODS: Expression and activity of vitamin A associated metabolic enzymes and RARß were assessed in human kidney angiomyolipoma derived cell lines, primary lymphangioleiomyomatosis (LAM) tissue derived LAM cell lines. RARß protein levels were also tested in primary LAM lung tissue sections. TaqMan arrays, enzyme activities, qRT-PCRs, immunohistochemistry, immunofluorescent staining, and western blotting were performed and analysed. The functional effects of retinoic acid (RA) and rapamycin were tested in a scratch and a BrDU assay to assess cell migration and proliferation. RESULTS: Metabolic enzyme arrays revealed a general deregulation of many enzymes involved in vitamin A metabolism including aldehyde dehydrogenases (ALDHs), alcohol dehydrogenases (ADHs) and Cytochrome P450 2E1 (CYP2E1). Furthermore, RARß downregulation was a characteristic feature of all TSC-deficient cell lines and primary tissues. Combination of the two FDA approved drugs -RA for acute myeloid leukaemia and rapamycin for TSC mutation- normalised ALDH and ADH expression and activity, restored RARß expression and reduced cellular proliferation and migration. CONCLUSION: Deregulation of vitamin A metabolizing enzymes is a feature of TSC mutation. RA can normalize RARß levels and limit cell migration but does not have a significant effect on proliferation. Based on our data, translational studies could confirm whether combination of RA with reduced dosage of rapamycin would have more beneficial effects to higher dosage of rapamycin monotherapy meanwhile reducing adverse effects of rapamycin for patients with TSC mutation.

9.
Apoptosis ; 26(5-6): 253-260, 2021 06.
Article in English | MEDLINE | ID: mdl-33860865

ABSTRACT

Tuberous sclerosis, angiomyolipoma and lymphangioleiomyomatosis are a group of diseases characterized by mutation in tuberous sclerosis genes (TSC 1-2). TSC mutation leads to continuous activation of the mTOR pathway that requires adaptation to increased ATP requirement. With limited treatment options, there is an increasing demand to identify novel therapeutic targets and to understand the correlations between mTOR pathway activation and the lack of cell death in the presence of TSC mutation. In the current study, we demonstrate deregulation of p53 controlled and mitochondria associated cell death processes. The study also reveals that treatment of TSC mutant cells with the drug candidate Proxison combined with reduced concentration of rapamycin can increase production of reactive oxygen species (ROS), can modify miRNA expression pattern associated with p53 regulation and can reduce cell viability.


Subject(s)
Apoptosis/genetics , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/genetics , Tumor Suppressor Protein p53/metabolism , Apoptosis/drug effects , Cell Death/drug effects , Cell Death/genetics , Cells, Cultured , Flavonoids/pharmacology , Humans , MicroRNAs/genetics , Mitochondria/metabolism , Mutation , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Thioredoxin-Disulfide Reductase/metabolism , Tuberous Sclerosis Complex 1 Protein/metabolism , Tuberous Sclerosis Complex 2 Protein/metabolism , Tumor Suppressor Protein p53/genetics
10.
Sci Rep ; 11(1): 8205, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859248

ABSTRACT

N-methyl-D-aspartate (NMDA) receptors are widely expressed in the central nervous system. However, their presence and function at extraneuronal sites is less well characterized. In the present study, we examined the expression of NMDA receptor subunit mRNA and protein in human pulmonary artery (HPA) by quantitative polymerase chain reaction (PCR), immunohistochemistry and immunoblotting. We demonstrate that both GluN1 and GluN2 subunit mRNAs are expressed in HPA. In addition, GluN1 and GluN2 (A-D) subunit proteins are expressed by human pulmonary artery smooth muscle cells (HPASMCs) in vitro and in vivo. These subunits localize on the surface of HPASMCs and form functional ion channels as evidenced by whole-cell patch-clamp electrophysiology and reduced phenylephrine-induced contractile responsiveness of human pulmonary artery by the NMDA receptor antagonist MK801 under hypoxic condition. HPASMCs also express high levels of serine racemase and vesicular glutamate transporter 1, suggesting a potential source of endogenous agonists for NMDA receptor activation. Our findings show HPASMCs express functional NMDA receptors in line with their effect on pulmonary vasoconstriction, and thereby suggest a novel therapeutic target for pharmacological modulations in settings associated with pulmonary vascular dysfunction.


Subject(s)
Muscle, Smooth, Vascular/metabolism , Pulmonary Artery/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Animals , Cells, Cultured , Humans , Lung/blood supply , Lung/metabolism , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/metabolism , Protein Subunits/genetics , Protein Subunits/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Vasoconstriction/genetics
11.
Int J Mol Sci ; 22(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668092

ABSTRACT

The mechanistic target of rapamycin (mTOR) and wingless-related integration site (Wnt) signal transduction networks are evolutionarily conserved mammalian growth and cellular development networks. Most cells express many of the proteins in both pathways, and this review will briefly describe only the key proteins and their intra- and extracellular crosstalk. These complex interactions will be discussed in relation to cancer development, drug resistance, and stem cell exhaustion. This review will also highlight the tumor-suppressive tuberous sclerosis complex (TSC) mutated, mTOR-hyperactive lung disease of women, lymphangioleiomyomatosis (LAM). We will summarize recent advances in the targeting of these pathways by monotherapy or combination therapy, as well as future potential treatments.


Subject(s)
Lymphangioleiomyomatosis/physiopathology , Molecular Targeted Therapy , TOR Serine-Threonine Kinases/metabolism , Wnt Proteins/metabolism , Animals , Humans , Lymphangioleiomyomatosis/drug therapy , Lymphangioleiomyomatosis/metabolism
12.
Cancer Res ; 81(8): 2086-2100, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33593821

ABSTRACT

Lymphangioleiomyomatosis is a rare destructive lung disease affecting primarily women and is the primary lung manifestation of tuberous sclerosis complex (TSC). In lymphangioleiomyomatosis, biallelic loss of TSC1/2 leads to hyperactivation of mTORC1 and inhibition of autophagy. To determine how the metabolic vulnerabilities of TSC2-deficient cells can be targeted, we performed a high-throughput screen utilizing the "Repurposing" library at the Broad Institute of MIT and Harvard (Cambridge, MA), with or without the autophagy inhibitor chloroquine. Ritanserin, an inhibitor of diacylglycerol kinase alpha (DGKA), was identified as a selective inhibitor of proliferation of Tsc2-/- mouse embryonic fibroblasts (MEF), with no impact on Tsc2+/+ MEFs. DGKA is a lipid kinase that metabolizes diacylglycerol to phosphatidic acid, a key component of plasma membranes. Phosphatidic acid levels were increased 5-fold in Tsc2-/- MEFs compared with Tsc2+/+ MEFs, and treatment of Tsc2-/- MEFs with ritanserin led to depletion of phosphatidic acid as well as rewiring of phospholipid metabolism. Macropinocytosis is known to be upregulated in TSC2-deficient cells. Ritanserin decreased macropinocytic uptake of albumin, limited the number of lysosomes, and reduced lysosomal activity in Tsc2-/- MEFs. In a mouse model of TSC, ritanserin treatment decreased cyst frequency and volume, and in a mouse model of lymphangioleiomyomatosis, genetic downregulation of DGKA prevented alveolar destruction and airspace enlargement. Collectively, these data indicate that DGKA supports macropinocytosis in TSC2-deficient cells to maintain phospholipid homeostasis and promote proliferation. Targeting macropinocytosis with ritanserin may represent a novel therapeutic approach for the treatment of TSC and lymphangioleiomyomatosis. SIGNIFICANCE: This study identifies macropinocytosis and phospholipid metabolism as novel mechanisms of metabolic homeostasis in mTORC1-hyperactive cells and suggest ritanserin as a novel therapeutic strategy for use in mTORC1-hyperactive tumors, including pancreatic cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2086/F1.large.jpg.


Subject(s)
Diacylglycerol Kinase/antagonists & inhibitors , Lung Neoplasms/drug therapy , Lymphangioleiomyomatosis/drug therapy , Pinocytosis/drug effects , Ritanserin/pharmacology , Tuberous Sclerosis Complex 2 Protein/deficiency , Tuberous Sclerosis/drug therapy , Angiolipoma/genetics , Animals , Autophagy/drug effects , Cell Proliferation , Chloroquine/pharmacology , Diacylglycerol Kinase/genetics , Diacylglycerol Kinase/metabolism , Down-Regulation , Drug Synergism , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression , Kidney Neoplasms/genetics , Lung Neoplasms/etiology , Lung Neoplasms/pathology , Lymphangioleiomyomatosis/etiology , Lymphangioleiomyomatosis/pathology , Lysosomes/drug effects , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Nude , Nutrients/metabolism , Phosphatidic Acids/metabolism , Phospholipids/metabolism , Pinocytosis/physiology , Tuberous Sclerosis/complications
14.
Nat Commun ; 11(1): 5640, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33159078

ABSTRACT

Lymphangioleiomyomatosis (LAM) is a rare fatal cystic lung disease due to bi-allelic inactivating mutations in tuberous sclerosis complex (TSC1/TSC2) genes coding for suppressors of the mechanistic target of rapamycin complex 1 (mTORC1). The origin of LAM cells is still unknown. Here, we profile a LAM lung compared to an age- and sex-matched healthy control lung as a hypothesis-generating approach to identify cell subtypes that are specific to LAM. Our single-cell RNA sequencing (scRNA-seq) analysis reveals novel mesenchymal and transitional alveolar epithelial states unique to LAM lung. This analysis identifies a mesenchymal cell hub coordinating the LAM disease phenotype. Mesenchymal-restricted deletion of Tsc2 in the mouse lung produces a mTORC1-driven pulmonary phenotype, with a progressive disruption of alveolar structure, a decline in pulmonary function, increase of rapamycin-sensitive expression of WNT ligands, and profound female-specific changes in mesenchymal and epithelial lung cell gene expression. Genetic inactivation of WNT signaling reverses age-dependent changes of mTORC1-driven lung phenotype, but WNT activation alone in lung mesenchyme is not sufficient for the development of mouse LAM-like phenotype. The alterations in gene expression are driven by distinctive crosstalk between mesenchymal and epithelial subsets of cells observed in mesenchymal Tsc2-deficient lungs. This study identifies sex- and age-specific gene changes in the mTORC1-activated lung mesenchyme and establishes the importance of the WNT signaling pathway in the mTORC1-driven lung phenotype.


Subject(s)
Lung/metabolism , Lymphangioleiomyomatosis/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mesoderm/metabolism , Age Factors , Aged , Animals , Female , Humans , Lung/drug effects , Lung/physiopathology , Lymphangioleiomyomatosis/drug therapy , Lymphangioleiomyomatosis/genetics , Lymphangioleiomyomatosis/physiopathology , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mesoderm/drug effects , Mice , Sex Factors , Sirolimus/administration & dosage , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/metabolism , Wnt Signaling Pathway
15.
Respir Med ; 163: 105898, 2020 03.
Article in English | MEDLINE | ID: mdl-32125970

ABSTRACT

INRODUCTION: The mechanistic target of rapamycin inhibitors (mTORi) sirolimus and everolimus stabilize lung function in patients with pulmonary lymphangioleiomyomatosis (LAM) but do not induce remission. Pre-clinical studies suggest that simvastatin in combination with sirolimus induces LAM cell death. The objective of this study was to assess the safety of simvastatin with either sirolimus or everolimus in LAM patients. METHODS: This was a phase II single arm trial evaluating the safety of escalating daily simvastatin (20-40 mg) in LAM patients already treated with sirolimus or everolimus. Adverse events and changes in lipid panel profile, pulmonary function tests, and VEGF-D were assessed. RESULTS: Ten LAM patients on a stable dose of mTORi for >3 months were treated with 20 mg simvastatin for two months followed by 40 mg for two months. The most common adverse events were peripheral edema (30%), cough (30%), and diarrhea (30%). No patients withdrew or had a reduction in simvastatin dose because of adverse events. Two patients required sirolumus dose reduction for supratherapeutic trough levels following simvastatin initiation. Total cholesterol and low density lipoproteins declined over the study period (-46.0 mg/dL±20.8, p = 0.008; -41.9 mg/dL±22.0, p = 0.01, respectively). There was also a decline in FEV1 (-82.0 mL±86.4, p = 0.02) but no significant change in FVC, DLCO, or VEGF-D. CONCLUSIONS: The combination of simvastatin with mTORi in LAM patients is safe and well-tolerated from an adverse events perspective. The addition of simvastatin, however, was associated with decline in FEV1 and the efficacy of this combination should be explored in larger trials.


Subject(s)
Everolimus/adverse effects , Lymphangioleiomyomatosis/drug therapy , Simvastatin/adverse effects , Tuberous Sclerosis/drug therapy , Drug Therapy, Combination , Everolimus/administration & dosage , Female , Forced Expiratory Volume , Humans , Lymphangioleiomyomatosis/complications , Lymphangioleiomyomatosis/physiopathology , Male , Safety , Simvastatin/administration & dosage , Sirolimus/administration & dosage , Treatment Outcome , Tuberous Sclerosis/complications , Tuberous Sclerosis/physiopathology
16.
Am J Respir Cell Mol Biol ; 62(6): 793-804, 2020 06.
Article in English | MEDLINE | ID: mdl-32078336

ABSTRACT

Patients with lymphangioleiomyomatosis (LAM) develop pulmonary cysts associated with neoplastic, smooth muscle-like cells that feature neuroendocrine cell markers. The disease preferentially affects premenopausal women. Existing therapeutics do not cure LAM. As gp100 is a diagnostic marker expressed by LAM lesions, we proposed to target this immunogenic glycoprotein using TCR transgenic T cells. To reproduce the genetic mutations underlying LAM, we cultured Tsc2-/- kidney tumor cells from aged Tsc2 heterozygous mice and generated a stable gp100-expressing cell line by lentiviral transduction. T cells were isolated from major histocompatibility complex-matched TCR transgenic pmel-1 mice to measure cytotoxicity in vitro, and 80% cytotoxicity was observed within 48 hours. Antigen-specific cytotoxicity was likewise observed using pmel-1 TCR-transduced mouse T cells, suggesting that transgenic T cells may likewise be useful to treat LAM in vivo. On intravenous injection, slow-growing gp100+ LAM-like cells formed lung nodules that were readily detectable in severe combined immunodeficient/beige mice. Adoptive transfer of gp100-reactive but not wild-type T cells into mice significantly shrunk established lung tumors, even in the absence of anti-PD-1 therapy. These results demonstrate the treatment potential of adoptively transferred T cells to eliminate pulmonary lesions in LAM.


Subject(s)
Immunotherapy, Adoptive , Lymphangioleiomyomatosis/therapy , T-Lymphocyte Subsets/transplantation , Animals , Cell Line , Cell Line, Tumor , Coculture Techniques , Gene Knockout Techniques , Immunocompetence , Kidney Neoplasms , Lymphangioleiomyomatosis/immunology , Male , Melanoma/immunology , Melanoma/therapy , Mice , Mice, Mutant Strains , Mice, SCID , Mice, Transgenic , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Receptors, Antigen, T-Cell/immunology , Recombinant Proteins/immunology , T-Cell Antigen Receptor Specificity , T-Lymphocyte Subsets/immunology , Tuberous Sclerosis Complex 2 Protein/deficiency , Tuberous Sclerosis Complex 2 Protein/genetics , Vesicular Transport Proteins/deficiency , gp100 Melanoma Antigen/genetics , gp100 Melanoma Antigen/immunology
17.
Biomolecules ; 10(1)2019 12 24.
Article in English | MEDLINE | ID: mdl-31878201

ABSTRACT

Lymphangioleiomyomatosis (LAM) is a rare metastatic cystic lung disease due to a mutation in a TSC tumor suppressor, resulting in hyperactive mTOR growth pathways. Sirolimus (rapamycin), an allosteric mTORC1 inhibitor, is a therapeutic option for women with LAM but it only maintains lung volume during treatment and does not provide benefit for all LAM patients. The two major mTORC1 protein synthesis pathways are via S6K/S6 or 4E-BP/eIF4E activation. We aimed to investigate rapamycin in combination with compounds that target associated growth pathways, with the potential to be additive to rapamycin. In this study we demonstrated that rapamycin, at a clinically tolerable concentration (10 nM), inhibited the phosphorylation of S6, but not the critical eIF4E releasing Thr 37/46 phosphorylation sites of 4E-BP1 in TSC2-deficient LAM-derived cells. We also characterized the abundant protein expression of peIF4E within LAM lesions. A selective MNK1/2 inhibitor eFT508 inhibited the phosphorylation of eIF4E but did not reduce TSC2-null cell growth. In contrast, a PI3K/mTOR inhibitor omipalisib blocked the phosphorylation of Akt and both S6K/S6 and 4E-BP/eIF4E branches, and additively decreased the growth of TSC2-null cells with rapamycin. Omipalisib, or another inhibitor of both major mTORC1 growth pathways and pAkt, might provide therapeutic options for TSC2-deficient cancers including, but not limited to, LAM.


Subject(s)
Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Tuberous Sclerosis Complex 2 Protein/deficiency , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridazines , Quinolines/pharmacology , Sirolimus/pharmacology , Sulfonamides/pharmacology
18.
Chest ; 156(6): 1062-1067, 2019 12.
Article in English | MEDLINE | ID: mdl-31437431

ABSTRACT

Pulmonary lymphangioleiomyomatosis (LAM) is a rare genetic multisystem disease characterized by the nodular proliferation of smooth muscle-like LAM cells, progressive cystic changes of the lung, lymphatic abnormalities, and renal angiomyolipomas (AMLs). LAM can arise sporadically or in women with the autosomal dominant disorder, tuberous sclerosis complex (TSC), in which hamartomatous tumors of brain, heart, skin, kidney, and lung are found. LAM and TSC are caused by mutations in the TSC1 or TSC2 tumor suppressor genes leading to elevated mechanistic/mammalian target of rapamycin complex activity. Recent data indicate that T cells within LAM nodules and renal AMLs exhibit features of T-cell exhaustion, with coinhibitory receptor programmed cell death protein 1 (PD-1) expression on tumor-infiltrating T cells. Treatment of animal models of TSC and LAM with anti-PD-1 antibodies or with the combination of anti-PD-1 and anti-CTLA4 antibodies has led to remarkable results, suppressing TSC2-null tumor growth and inducing tumor rejection. Here we review our current knowledge about the potential for immunotherapy for the treatment of LAM and TSC and highlight critical unknowns and key next steps.


Subject(s)
Immunotherapy , Lung Neoplasms/therapy , Lymphangioleiomyomatosis/therapy , Tuberous Sclerosis/therapy , Animals , Cell Cycle Checkpoints/drug effects , Forecasting , Humans
19.
J Clin Invest ; 129(10): 4451-4463, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31408438

ABSTRACT

BACKGROUND: Idiopathic multicentric Castleman disease (iMCD) is a hematologic illness involving cytokine-induced lymphoproliferation, systemic inflammation, cytopenias, and life-threatening multi-organ dysfunction. The molecular underpinnings of interleukin-6(IL-6)-blockade refractory patients remain unknown; no targeted therapies exist. In this study, we searched for therapeutic targets in IL-6-blockade refractory iMCD patients with the thrombocytopenia, anasarca, fever/elevated C-reactive protein, reticulin myelofibrosis, renal dysfunction, organomegaly (TAFRO) clinical subtype. METHODS: We analyzed tissues and blood samples from three IL-6-blockade refractory iMCD-TAFRO patients. Cytokine panels, quantitative serum proteomics, flow cytometry of PBMCs, and pathway analyses were employed to identify novel therapeutic targets. To confirm elevated mTOR signaling, a candidate therapeutic target from the above assays, immunohistochemistry was performed for phosphorylated S6, a read-out of mTOR activation, in three iMCD lymph node tissue samples and controls. Proteomic, immunophenotypic, and clinical response assessments were performed to quantify the effects of administration of the mTOR inhibitor, sirolimus. RESULTS: Studies of three IL-6-blockade refractory iMCD cases revealed increased CD8+ T cell activation, VEGF-A, and PI3K/Akt/mTOR pathway activity. Administration of sirolimus significantly attenuated CD8+ T cell activation and decreased VEGF-A levels. Sirolimus induced clinical benefit responses in all three patients with durable and ongoing remissions of 66, 19, and 19 months. CONCLUSION: This precision medicine approach identifies PI3K/Akt/mTOR signaling as the first pharmacologically-targetable pathogenic process in IL-6-blockade refractory iMCD. Prospective evaluation of sirolimus in treatment-refractory iMCD is planned (NCT03933904). FUNDING: Castleman's Awareness & Research Effort/Castleman Disease Collaborative Network, Penn Center for Precision Medicine, University Research Foundation, Intramural NIH funding, and National Heart Lung and Blood Institute.


Subject(s)
Castleman Disease , Interleukin-6/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Adolescent , Adult , Castleman Disease/drug therapy , Castleman Disease/metabolism , Castleman Disease/pathology , Female , Humans , Male , Middle Aged , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...