Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 276: 107444, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723324

ABSTRACT

The conceptual dynamic ecosystem model was developed to evaluate the self-organization of trophic structure in ecosystems during the course of biogenic succession. This model was applied to analyze the possible changes in the ecosystem under impact of the anthropogenic physical stressor - chronic exposure to ionizing irradiation. The model predicts that amount of the limiting biogenic nutrient in the environment can modify the ecological effects of ionizing radiation. Negative effects of the chronic exposure are less significant in ecosystems with high food supply. The model does not show presence of any ecological effect of radiation at the exposure rates less than the derived consideration reference levels, obtained by International Commission on Radiological Protection for individual nature organisms. If the dose rates are higher than those levels, radiation exposure can affect ecological interactions between species. The model shows that environmental hormesis can exist in the ecosystems, impacted by the chronic radiation exposure. The reason of this effect is change of the ecological coefficients (for example, decrease of the predation rate), which in the certain range of parameters leads to the increase of biomasses of all species at the same amount of the limiting biogenic nutrient in ecosystem. Trigger regimes exist in the model ecosystem with mixed-feeding consumers. Within the trigger area, the realization of a particular trophic structure depends on initial species biomasses. A hysteresis phenomenon exists in such ecosystems, which means that the successive changes in the trophic structures realized following the increase of the influencing factor are not reproduced in the same order if the influencing factor was gradually decreased back to its previous values. The model predicts for this case, that the radioactively contaminated ecosystem does not necessarily return to its initial trophic structure, despite the dose rate decreases to the initial levels.


Subject(s)
Ecosystem , Food Chain , Radiation Monitoring , Radiation Exposure , Models, Theoretical
2.
Biomed Phys Eng Express ; 8(3)2022 03 17.
Article in English | MEDLINE | ID: mdl-35259731

ABSTRACT

A new analytical formalism, previously developed for estimating electron-absorbed fractions, was extended for estimating photon absorbed fractions in soft-tissue spheres, containing uniformly distributed photon-emitter. Analytical equations were formulated for calculating values of photon-absorbed fractions. The method involves a rescaling procedure with transformation of real biological sizes to unitless effective ones, combining information of photon energy, object's size, and material. Rescaling was applied to large published datasets of photon absorbed fractions in soft-tissue spheres, computed with Monte Carlo codes. A new effect was demonstrated in which the rescaled data formed a single smooth 'unified curve' with saturation. The unified curve for photon absorbed fractions was described analytically, using simple equations without fitting parameters. The new method was tested for a wide range of spheres-from 1 mg up to 1000 kg, and wide range of photon energies-from 0.02 up to 5 MeV. For larger spheres, a close agreement between analytical values and Monte Carlo datasets was demonstrated. For small biovolumes, analytical equations predict higher values than available Monte Carlo data. The unified formalism is now available for direct calculating radiation absorbed fractions in soft-tissue spherical organs and organisms without Monte Carlo codes.


Subject(s)
Photons , Radiometry , Electrons , Monte Carlo Method , Radiometry/methods
3.
Radiat Environ Biophys ; 60(1): 141-149, 2021 03.
Article in English | MEDLINE | ID: mdl-33123782

ABSTRACT

A new analytical methodology was developed for estimating electron-absorbed fractions in soft-tissue biological volumes from mono-energy emitters, uniformly distributed within these volumes. The approach was originally developed for soft-tissue spheres and was extended to ellipsoids. The method involves a procedure of size rescaling to the electron CSDA ranges. The rescaling was applied to large published datasets of electron-absorbed fractions in soft-tissue spheres. A new effect was demonstrated, i.e., that it is possible to describe the rescaled data on absorbed fractions by a single smooth 'universal curve'. A simple analytical formula is suggested, which describes the curve as a function of a single argument (the so-called rescaled radius) with saturation. Practical application of the method for estimating internal doses to non-human biota was demonstrated. It is concluded that the method provides an effective analytical tool for calculating the electron-absorbed fractions in soft-tissue bio-volumes relevant to various organisms and organs.


Subject(s)
Electrons , Radiation Dosage , Biota , Computer Simulation , Monte Carlo Method
4.
J Environ Radioact ; 165: 227-242, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27792921

ABSTRACT

Lower threshold dose rates and confidence limits are quantified for lifetime radiation effects in mammalian animals from internally deposited alpha-emitting radionuclides. Extensive datasets on effects from internal alpha-emitters are compiled from the International Radiobiological Archives. In total, the compiled database includes 257 records, which are analyzed by means of non-parametric order statistics. The generic lower threshold for alpha-emitters in mammalian animals (combined datasets) is 6.6·10-5 Gy day-1. Thresholds for individual alpha-emitting elements differ considerably: plutonium and americium - 2.0·10-5 Gy day-1; radium - 2.1·10-4 Gy day-1. Threshold for chronic low-LET radiation is previously estimated at 1·10-3 Gy day-1. For low exposures, the following values of alpha radiation weighting factor wR for internally deposited alpha-emitters in mammals are quantified: wR(α) = 15 as a generic value for the whole group of alpha-emitters; wR(Pu) = 50 for plutonium; wR(Am) = 50 for americium; wR(Ra) = 5 for radium. These values are proposed to serve as radiation weighting factors in calculations of equivalent doses to non-human biota. The lower threshold dose rate for long-lived mammals (dogs) is significantly lower than comparing with the threshold for short-lived mammals (mice): 2.7·10-5 Gy day-1, and 2.0·10-4 Gy day-1, respectively. The difference in thresholds is exactly reflecting the relationship between the natural longevity of these two species. Graded scale of severity in lifetime radiation effects in mammals is developed, based on compiled datasets. Being placed on the severity scale, the effects of internal alpha-emitters are situated in the zones of considerably lower dose rates than effects of the same severity caused by low-LET radiation. RBE values, calculated for effects of equal severity, are found to depend on the intensity of chronic exposure: different RBE values are characteristic for low, moderate, and high lifetime exposures (30, 70, and 13, respectively). The results of the study provide a basis for selecting correct values of radiation weighting factors in dose assessment to non-human biota.


Subject(s)
Mammals , Radiation Dosage , Radiation Exposure/standards , Animals , Dogs , Mice , Radiation Exposure/statistics & numerical data
5.
J Environ Radioact ; 151 Pt 1: 50-57, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26408836

ABSTRACT

A dynamic mathematical model is formulated, predicting the development of radiation effects in a generic animal population, inhabiting an elemental ecosystem 'population-limiting resource'. Differential equations of the model describe the dynamic responses to radiation damage of the following population characteristics: gross biomass; intrinsic fractions of healthy and reversibly damaged tissues in biomass; intrinsic concentrations of the self-repairing pool and the growth factor; and amount of the limiting resource available in the environment. Analytical formulae are found for the steady states of model variables as non-linear functions of the dose rate of chronic radiation exposure. Analytical solutions make it possible to predict the expected severity of radiation effects in a model ecosystem, including such endpoints as morbidity, mortality, life shortening, biosynthesis, and population biomass. Model parameters are selected from species data on lifespan, physiological growth and mortality rates, and individual radiosensitivity. Thresholds for population extinction can be analytically calculated for different animal species, examples are provided for generic mice and wolf populations. The ecosystem model demonstrates a compensatory effect of the environment on the development of radiation effects in wildlife. The model can be employed to construct a preliminary scale 'radiation exposure-population effects' for different animal species; species can be identified, which are vulnerable at a population level to chronic radiation exposure.


Subject(s)
Mice/physiology , Radiation, Ionizing , Radioactive Pollutants/adverse effects , Wolves/physiology , Animals , Dose-Response Relationship, Radiation , Models, Biological , Population Dynamics , Radiation Tolerance , Risk Assessment
6.
Radiat Environ Biophys ; 51(4): 399-410, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22790120

ABSTRACT

An inter-comparison of five models designed to predict the effect of ionizing radiation on populations of non-human wildlife, performed under the IAEA EMRAS II programme, is presented and discussed. A benchmark scenario 'Population response to chronic irradiation' was developed in which stable generic populations of mice, hare/rabbit, wolf/wild dog and deer were modelled as subjected to chronic low-LET radiation with dose rates of 0-5 × 10(-2) Gy day(-1) in increments of 10(-2) Gy day(-1). The duration of exposure simulations was 5 years. Results are given for the size of each surviving population for each of the applied dose rates at the end of the 1st to 5th years of exposure. Despite the theoretical differences in the modelling approaches, the inter-comparison allowed the identification of a series of common findings. At dose rates of about 10(-2) Gy day(-1) for 5 years, the survival of populations of short-lived species was better than that of long-lived species: significant reduction in large mammals was predicted whilst small mammals survive at 80-100 % of the control. Dose rates in excess of 2 × 10(-2) Gy day(-1) for 5 years produced considerable reduction in all populations. From this study, a potential relationship between higher reproduction rates and lower radiation effects at population level can be hypothesized. The work signals the direction for future investigations to validate and improve the predictive ability of different population dose effects models.


Subject(s)
Models, Biological , Radiation Dosage , Animals , Animals, Wild , Deer , Dogs , Hares , Mice , Rabbits , Radiation, Ionizing , Wolves
7.
Appl Radiat Isot ; 66(11): 1736-40, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18514533

ABSTRACT

The paper describes the main results of the international EMRAS model testing exercise for radionuclide transport in watershed-river and estuarine systems. The exercises included the following scenarios: multi-point source of (3)H discharge into the Loire River (France), radioactive contamination of the Dnieper-Southern Boug estuary (Ukraine), remobilisation of radionuclide contamination from the Pripyat River floodplain (Ukraine) following the Chernobyl accident, release of radionuclides into the Techa River (Russia) and behaviour of (226)Ra in the Huelva estuary (Spain).


Subject(s)
Models, Theoretical , Radiation Monitoring/methods , Radioisotopes/analysis , Radioisotopes/chemistry , Water Pollutants, Radioactive/analysis , Water Pollutants, Radioactive/chemistry , Water/chemistry , Computer Simulation , Europe , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity , Water/analysis
8.
J Environ Radioact ; 84(2): 245-58, 2005.
Article in English | MEDLINE | ID: mdl-15978706

ABSTRACT

Environmental assessment models are used as decision-aiding tools in the selection of remediation options for radioactively contaminated sites. In most cases, the effectiveness of the remedial actions in terms of dose savings cannot be demonstrated directly, but can be established with the help of environmental assessment models, through the assessment of future radiological impacts. It should be emphasized that, given the complexity of the processes involved and our current understanding of how they operate, these models are simplified descriptions of the behaviour of radionuclides in the environment and therefore imperfect. One way of testing and improving the reliability of the models is to compare their predictions with real data and/or the predictions of other models. Within the framework of the Remediation Assessment Working Group (RAWG) of the BIOMASS (BIOsphere Modelling and ASSessment) programme coordinated by IAEA, two scenarios were constructed and applied to test the reliability of environmental assessment models when remedial actions are involved. As a test site, an area of approximately 100 ha contaminated by the discharges of an old radium extraction plant in Olen (Belgium) has been considered. In the first scenario, a real situation was evaluated and model predictions were compared with measured data. In the second scenario the model predictions for specific hypothetical but realistic situations were compared. Most of the biosphere models were not developed to assess the performance of remedial actions and had to be modified for this purpose. It was demonstrated clearly that the modeller's experience and familiarity with the mathematical model, the site and with the scenario play a very important role in the outcome of the model calculations. More model testing studies, preferably for real situations, are needed in order to improve the models and modelling methods and to expand the areas in which the models are applicable.


Subject(s)
Models, Theoretical , Radioactive Pollutants , Radium , Belgium
SELECTION OF CITATIONS
SEARCH DETAIL
...