Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 10(6)2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35740411

ABSTRACT

Angiotensin I-converting enzyme (ACE) is a peptidase widely presented in human tissues and biological fluids. ACE is a glycoprotein containing 17 potential N-glycosylation sites which can be glycosylated in different ways due to post-translational modification of the protein in different cells. For the first time, surface-enhanced Raman scattering (SERS) spectra of human ACE from lungs, mainly produced by endothelial cells, ACE from heart, produced by endothelial heart cells and miofibroblasts, and ACE from seminal fluid, produced by epithelial cells, have been compared with full assignment. The ability to separate ACEs' SERS spectra was demonstrated using the linear discriminant analysis (LDA) method with high accuracy. The intervals in the spectra with maximum contributions of the spectral features were determined and their contribution to the spectrum of each separate ACE was evaluated. Near 25 spectral features forming three intervals were enough for successful separation of the spectra of different ACEs. However, more spectral information could be obtained from analysis of 50 spectral features. Band assignment showed that several features did not correlate with band assignments to amino acids or peptides, which indicated the carbohydrate contribution to the final spectra. Analysis of SERS spectra could be beneficial for the detection of tissue-specific ACEs.

2.
Oncotarget ; 10(59): 6349-6361, 2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31695843

ABSTRACT

Epithelial cells of prostate express significant level of ACE and, as a result, seminal fluid has 50-fold more ACE than plasma. The substitution of highly specialized prostate epithelial cells by tumor cells results in dramatic decrease in ACE production in prostate tissues. We performed detailed characterization of ACE status in prostate tissues from patients with benign prostate hyperplasia (BPH) and prostate cancer (PC) using new approach- ACE phenotyping, that includes evaluation of: 1) ACE activity with two substrates (HHL and ZPHL); 2) the ratio of the rates of their hydrolysis (ZPHL/HHL ratio); 3) the ratio of immunoreactive ACE protein to ACE activity; 4) the pattern of mAbs binding to different epitopes on ACE - ACE conformational fingerprint - to reveal conformational changes in prostate ACE due to prostate pathology. ACE activity dramatically decreased and the ratio of immunoreactive ACE protein to ACE activity increased in PC tissues. The catalytic parameter, ZPHL/HHL ratio, increased in prostate tissues from all patients with PC, but was did not change for most |BPH patients. Nevertheless, prostate tissues of several patients diagnosed with BPH based on histology, also demonstrated decreased ACE activity and increased immunoreactive ACE protein/ACE activity and ZPHL/HHL ratios, that could be considered as more early indicators of prostate cancer development than routine histology. Thus, ACE phenotyping of prostate biopsies has a potential to be an effective approach for early diagnostics of prostate cancer or at least for differential diagnostics of BPH and PC.

3.
PLoS One ; 13(12): e0209861, 2018.
Article in English | MEDLINE | ID: mdl-30589901

ABSTRACT

BACKGROUND: The pattern of binding of monoclonal antibodies (mAbs) to 18 epitopes on human angiotensin I-converting enzyme (ACE)-"conformational fingerprint of ACE"-is a sensitive marker of subtle conformational changes of ACE due to mutations, different glycosylation in various cells, the presence of ACE inhibitors and specific effectors, etc. METHODOLOGY/PRINCIPAL FINDINGS: We described in detail the methodology of the conformational fingerprinting of human blood and tissue ACEs that allows detecting differences in surface topography of ACE from different tissues, as well detecting inter-individual differences. Besides, we compared the sensitivity of the detection of ACE inhibitors in the patient's plasma using conformational fingerprinting of ACE (with only 2 mAbs to ACE, 1G12 and 9B9) and already accepted kinetic assay and demonstrated that the mAbs-based assay is an order of magnitude more sensitive. This approach is also very effective in detection of known (like bilirubin and lysozyme) and still unknown ACE effectors/inhibitors which nature and set could vary in different tissues or different patients. CONCLUSIONS/SIGNIFICANCE: Phenotyping of ACE (and conformational fingerprinting of ACE as a part of this novel approach for characterization of ACE) in individuals really became informative and clinically relevant. Appreciation (and counting on) of inter-individual differences in ACE conformation and accompanying effectors make the application of this approach for future personalized medicine with ACE inhibitors more accurate. This (or similar) methodology can be applied to any enzyme/protein for which there is a number of mAbs to its different epitopes.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/chemistry , Epitopes , Peptidyl-Dipeptidase A , Epitopes/chemistry , Epitopes/metabolism , Female , Humans , Male , Organ Specificity/physiology , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Conformation
4.
PLoS One ; 12(8): e0181976, 2017.
Article in English | MEDLINE | ID: mdl-28771512

ABSTRACT

AIMS: Angiotensin-converting enzyme (ACE), which metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling, is expressed as a type-1 membrane glycoprotein on the surface of different cells, including endothelial cells of the heart. We hypothesized that the local conformation and, therefore, the properties of heart ACE could differ from lung ACE due to different microenvironment in these organs. METHODS AND RESULTS: We performed ACE phenotyping (ACE levels, conformation and kinetic characteristics) in the human heart and compared it with that in the lung. ACE activity in heart tissues was 10-15 lower than that in lung. Various ACE effectors, LMW endogenous ACE inhibitors and HMW ACE-binding partners, were shown to be present in both heart and lung tissues. "Conformational fingerprint" of heart ACE (i.e., the pattern of 17 mAbs binding to different epitopes on the ACE surface) significantly differed from that of lung ACE, which reflects differences in the local conformations of these ACEs, likely controlled by different ACE glycosylation in these organs. Substrate specificity and pH-optima of the heart and lung ACEs also differed. Moreover, even within heart the apparent ACE activities, the local ACE conformations, and the content of ACE inhibitors differ in atria and ventricles. CONCLUSIONS: Significant differences in the local conformations and kinetic properties of heart and lung ACEs demonstrate tissue specificity of ACE and provide a structural base for the development of mAbs able to distinguish heart and lung ACEs as a potential blood test for predicting atrial fibrillation risk.


Subject(s)
Heart Atria/metabolism , Lung/metabolism , Peptidyl-Dipeptidase A/metabolism , Animals , Humans , Male , Organ Specificity , Phenotype , Rats , Rats, Wistar
5.
Sci Rep ; 6: 34913, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27734897

ABSTRACT

Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood. In this study, we identified a novel ACE gene mutation (Arg532Trp substitution in the N domain of somatic ACE) that increases blood ACE activity 7-fold and interrogated the mechanism by which this mutation significantly increases blood ACE levels. We hypothesized that this ACE mutation disrupts the binding site for blood components which may stabilize ACE conformation and diminish ACE shedding. We identified the ACE-binding protein in the blood as lysozyme and also a Low Molecular Weight (LMW) ACE effector, bilirubin, which act in concert to regulate ACE conformation and thereby influence ACE shedding. These results provide mechanistic insight into the elevated blood level of ACE observed in patients on ACE inhibitor therapy and elevated blood lysozyme and ACE levels in sarcoidosis patients.


Subject(s)
Bilirubin/chemistry , Muramidase/chemistry , Peptidyl-Dipeptidase A/chemistry , Animals , Antibodies, Monoclonal/chemistry , CHO Cells , Case-Control Studies , Cell Membrane/metabolism , Cricetinae , Cricetulus , Flow Cytometry , Humans , Intercellular Signaling Peptides and Proteins , Mice , Mutation , Peptides/chemistry , Phenotype , Protein Binding , Protein Domains , Pulmonary Surfactant-Associated Protein C , Sarcoidosis/blood , Surface Plasmon Resonance
6.
PLoS One ; 10(11): e0143455, 2015.
Article in English | MEDLINE | ID: mdl-26600189

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme (ACE), which metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling, as well as in reproductive functions, is expressed as a type-1 membrane glycoprotein on the surface of endothelial and epithelial cells. ACE also presents as a soluble form in biological fluids, among which seminal fluid being the richest in ACE content - 50-fold more than that in blood. METHODS/PRINCIPAL FINDINGS: We performed conformational fingerprinting of lung and seminal fluid ACEs using a set of monoclonal antibodies (mAbs) to 17 epitopes of human ACE and determined the effects of potential ACE-binding partners on mAbs binding to these two different ACEs. Patterns of mAbs binding to ACEs from lung and from seminal fluid dramatically differed, which reflects difference in the local conformations of these ACEs, likely due to different patterns of ACE glycosylation in the lung endothelial cells and epithelial cells of epididymis/prostate (source of seminal fluid ACE), confirmed by mass-spectrometry of ACEs tryptic digests. CONCLUSIONS: Dramatic differences in the local conformations of seminal fluid and lung ACEs, as well as the effects of ACE-binding partners on mAbs binding to these ACEs, suggest different regulation of ACE functions and shedding from epithelial cells in epididymis and prostate and endothelial cells of lung capillaries. The differences in local conformation of ACE could be the base for the generation of mAbs distingushing tissue-specific ACEs.


Subject(s)
Peptidyl-Dipeptidase A/metabolism , Antibodies, Monoclonal , Endothelial Cells/metabolism , Epididymis/metabolism , Epitope Mapping , Humans , Lung/metabolism , Male , Prostate/metabolism , Semen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...