Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 54(12): 1907-1918, 2022 12.
Article in English | MEDLINE | ID: mdl-36471076

ABSTRACT

In mammals, interactions between sequences within topologically associating domains enable control of gene expression across large genomic distances. Yet it is unknown how frequently such contacts occur, how long they last and how they depend on the dynamics of chromosome folding and loop extrusion activity of cohesin. By imaging chromosomal locations at high spatial and temporal resolution in living cells, we show that interactions within topologically associating domains are transient and occur frequently during the course of a cell cycle. Interactions become more frequent and longer in the presence of convergent CTCF sites, resulting in suppression of variability in chromosome folding across time. Supported by physical models of chromosome dynamics, our data suggest that CTCF-anchored loops last around 10 min. Our results show that long-range transcriptional regulation might rely on transient physical proximity, and that cohesin and CTCF stabilize highly dynamic chromosome structures, facilitating selected subsets of chromosomal interactions.


Subject(s)
Chromosomes , Chromosomes/genetics
2.
Nature ; 604(7906): 571-577, 2022 04.
Article in English | MEDLINE | ID: mdl-35418676

ABSTRACT

Chromosome structure in mammals is thought to regulate transcription by modulating three-dimensional interactions between enhancers and promoters, notably through CTCF-mediated loops and topologically associating domains (TADs)1-4. However, how chromosome interactions are actually translated into transcriptional outputs remains unclear. Here, to address this question, we use an assay to position an enhancer at large numbers of densely spaced chromosomal locations relative to a fixed promoter, and measure promoter output and interactions within a genomic region with minimal regulatory and structural complexity. A quantitative analysis of hundreds of cell lines reveals that the transcriptional effect of an enhancer depends on its contact probabilities with the promoter through a nonlinear relationship. Mathematical modelling suggests that nonlinearity might arise from transient enhancer-promoter interactions being translated into slower promoter bursting dynamics in individual cells, therefore uncoupling the temporal dynamics of interactions from those of transcription. This uncovers a potential mechanism of how distal enhancers act from large genomic distances, and of how topologically associating domain boundaries block distal enhancers. Finally, we show that enhancer strength also determines absolute transcription levels as well as the sensitivity of a promoter to CTCF-mediated transcriptional insulation. Our measurements establish general principles for the context-dependent role of chromosome structure in long-range transcriptional regulation.


Subject(s)
Chromosomes , Enhancer Elements, Genetic , Animals , Chromatin/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Genomics , Mammals/genetics , Promoter Regions, Genetic/genetics
3.
Nat Struct Mol Biol ; 26(6): 471-480, 2019 06.
Article in English | MEDLINE | ID: mdl-31133702

ABSTRACT

Current understanding of chromosome folding is largely reliant on chromosome conformation capture (3C)-based experiments, where chromosomal interactions are detected as ligation products after chromatin crosslinking. To measure chromosome structure in vivo, quantitatively and without crosslinking and ligation, we implemented a modified version of DNA adenine methyltransferase identification (DamID) named DamC, which combines DNA methylation-based detection of chromosomal interactions with next-generation sequencing and biophysical modeling of methylation kinetics. DamC performed in mouse embryonic stem cells provides the first in vivo validation of the existence of topologically associating domains (TADs), CTCF loops and confirms 3C-based measurements of the scaling of contact probabilities. Combining DamC with transposon-mediated genomic engineering shows that new loops can be formed between ectopic and endogenous CTCF sites, which redistributes physical interactions within TADs. DamC provides the first crosslinking- and ligation-free demonstration of the existence of key structural features of chromosomes and provides novel insights into how chromosome structure within TADs can be manipulated.


Subject(s)
CCCTC-Binding Factor/metabolism , Chromatin/metabolism , DNA Methylation , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Animals , Bacterial Proteins/metabolism , Cell Line , Chromatin/chemistry , Chromosomes/chemistry , Chromosomes/metabolism , Mice , Mouse Embryonic Stem Cells/chemistry , Mouse Embryonic Stem Cells/metabolism , Nucleic Acid Conformation , Recombinant Fusion Proteins/metabolism
4.
Cardiovasc Res ; 113(11): 1403-1417, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28859293

ABSTRACT

AIMS: The histidine-rich calcium-binding protein (HRC) Ser96Ala variant has previously been identified as a potential biomarker for ventricular arrhythmias and sudden cardiac death in patients with idiopathic dilated cardiomyopathy. Herein, the role of this variant in cardiac pathophysiology is delineated through a novel mouse model, carrying the human mutation in the homologous mouse position. METHODS AND RESULTS: The mouse HRC serine 81, homologous to human HRC serine 96, was mutated to alanine, using knock-in gene targeting. The HRC-Ser81Ala mice presented increased mortality in the absence of structural or histological abnormalities, indicating that early death may be arrhythmia-related. Indeed, under stress-but not baseline-conditions, the HRC-Ser81Ala mice developed ventricular arrhythmias, whilst at the cardiomyocyte level they exhibited increased occurrence of triggered activity. Cardiac contraction was decreased in vivo, ex vivo, and in vitro. Additionally, Ca2+ transients and SR Ca2+ load were both reduced suggesting that cytosolic Ca2+ overload is not the underlying proarrhythmic mechanism. Interestingly, total SR Ca2+ leak was increased in HRC-Ser81Ala cardiomyocytes, without an increase in Ca2+ spark and wave frequency. However, Ca2+ wave propagation was significantly slower and the duration of the associated Na/Ca exchange current was increased. Moreover, action potential duration was also increased. Notably, Ca2+/Calmodulin kinase II (CaMKII) phosphorylation of the ryanodine receptor was increased, whilst KN-93, an inhibitor of CaMKII, reduced the occurrence of arrhythmias. CONCLUSIONS: The homologous mutation Ser81Ala in HRC in mice, corresponding to Ser96Ala in humans, is associated with sudden death and depressed cardiac function. Ventricular arrhythmias are related to abnormal Ca2+ cycling across the SR. The data further support a role for CaMKII with the perspective to treat arrhythmias through CaMKII inhibition.


Subject(s)
Arrhythmias, Cardiac/metabolism , Calcium/metabolism , Homeostasis/physiology , Action Potentials/genetics , Animals , Arrhythmias, Cardiac/genetics , Calcium Signaling/drug effects , Calcium Signaling/physiology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Death, Sudden, Cardiac , Disease Models, Animal , Mice, Transgenic , Myocardial Contraction/genetics , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism
5.
Nat Struct Mol Biol ; 24(2): 99-107, 2017 02.
Article in English | MEDLINE | ID: mdl-28067915

ABSTRACT

Nucleosomes are essential for proper chromatin organization and the maintenance of genome integrity. Histones are post-translationally modified and often evicted at sites of DNA breaks, facilitating the recruitment of repair factors. Whether such chromatin changes are localized or genome-wide is debated. Here we show that cellular levels of histones drop 20-40% in response to DNA damage. This histone loss occurs from chromatin, is proteasome-mediated and requires both the DNA damage checkpoint and the INO80 nucleosome remodeler. We confirmed reductions in histone levels by stable isotope labeling of amino acids in cell culture (SILAC)-based mass spectrometry, genome-wide nucleosome mapping and fluorescence microscopy. Chromatin decompaction and increased fiber flexibility accompanied histone degradation, both in response to DNA damage and after artificial reduction of histone levels. As a result, recombination rates and DNA-repair focus turnover were enhanced. Thus, we propose that a generalized reduction in nucleosome occupancy is an integral part of the DNA damage response in yeast that provides mechanisms for enhanced chromatin mobility and homology search.


Subject(s)
Chromatin/metabolism , Histones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Chromatin/genetics , Chromatin Assembly and Disassembly , DNA Damage , DNA Repair , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Recombination, Genetic , Saccharomyces cerevisiae/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...