Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34640840

ABSTRACT

We compared the transmission performances of 600 Gbit/s PM-64QAM WDM signals over 75.6 km of single-mode fibre (SMF) using EDFA, discrete Raman, hybrid Raman/EDFA, and first-order or second-order (dual-order) distributed Raman amplifiers. Our numerical simulations and experimental results showed that the simple first-order distributed Raman scheme with backward pumping delivered the best transmission performance among all the schemes, notably better than the expected second-order Raman scheme, which gave a flatter signal power variation along the fibre. Using the first-order backward Raman pumping scheme demonstrated a better balance between the ASE noise and fibre nonlinearity and gave an optimal transmission performance over a relatively short distance of 75 km SMF.

2.
Opt Express ; 29(20): 32081-32088, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34615286

ABSTRACT

Relative intensity noise (RIN) induced penalties were experimentally measured in distributed Raman amplifiers (DRAs) for G.654.E and G.652.D fibres with forward, backward and bidirectional pumping configurations. The measured signal RIN using the G.654.E fibre was ∼3.5 dB and ∼2 dB lower than the G.652.D fibre with forward (FW) pump configuration for PM-QPSK and PM-8QAM signals, with single span transmission showing a Q-factor improvement of ∼3 dB and ∼2.5 dB for G.654.E over G.652.D fibres. The performance penalty in a long haul coherent system was evaluated for 28 GBaud PM-QPSK signals using a recirculation loop for backward and bidirectional distributed Raman amplifiers. Our experimental results demonstrate an additional transmission distance of more than 1000 km for G.654.E over its counterpart G.652.D assuming a HD-FEC limit of 8.5 dB.

3.
Opt Express ; 28(12): 18296-18303, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32680028

ABSTRACT

The performance of a multi-span transmission link compensated with a >75nm broadband discrete Raman amplifier is experimentally evaluated using multiple DP-x-QAM modulation formats over a multi-channel C + L band WDM grid with up to 182 × 50 GHz spaced channels.

4.
Opt Express ; 28(12): 18440-18448, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32680042

ABSTRACT

We experimentally investigate the impact of pump-signal overlap in ultra-wideband (>13THz) Raman amplifiers and measure the transmission penalty on 30GBaud PM-QPSK signals due to adjacent Raman pumps in a 15dB gain, 150nm (∼18.8THz) S+C+L-band discrete Raman amplifier. We present an efficient numerical model to predict the performance penalty induced by crosstalk from Rayleigh backscattered light from backward-propagating Raman pumps showing good agreement with the experimental results. A 4nm guard-band must be retained around an overlapping Raman pump based on typical, commercial semiconductor laser pump diodes to ensure a negligible transmission penalty in S-band.

5.
Opt Express ; 26(6): 7091-7097, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29609395

ABSTRACT

We present a broadband (>70nm), dual stage, discrete Raman amplifier designed with small and standard core fibres to maximize gain and minimize nonlinearity. The amplifier provides ~19.5dB net gain, 22.5dBm saturation output power and a noise figure of <7.2dB. 120Gb/s DP-QPSK transmission over 38x80km at a pre-FEC BER <3.8x10-3 is demonstrated.

6.
Opt Express ; 24(25): 29170-29175, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27958578

ABSTRACT

Relative intensity noise transfer from the pump to the signal in 2nd-order ultra-long Raman laser amplifiers for telecommunications is characterized numerically and experimentally. Our results showcase the need for careful adjustment of the front FBG reflectivity and the relative contribution of forward pump power, and their impact on performance. Finally, our analysis is verified through a 10 × 30 GBaud DP-QPSK transmission experiment, showing a large Q factor penalty associated with the combination of high forward pumping and high reflectivities.

SELECTION OF CITATIONS
SEARCH DETAIL
...