Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Forensic Sci Int Genet ; 58: 102663, 2022 05.
Article in English | MEDLINE | ID: mdl-35168910

ABSTRACT

The production and trade of objects manufactured from the skeletal axis of coralid precious corals is a historically, culturally and economically important global industry. Coralids are members of the diverse Coralliidae family, which contains several species complexes and morphospecies. For most precious coral found in the jewelry trade, the color remains the sole clue and link to the taxonomic identity of the individual. Different coralid species have however similar or overlapping colors resulting in difficulty to taxonomically identify jewelry objects, including four species listed by the Convention on the International Trade of Endangered Species (CITES) whose international transport and trade requires species-specific and country of origin documentation. We aimed at developing a reliable method to taxonomically identify coralid material with the objective of distinguishing CITES protected species from their non-protected counterparts. We present Coral-ID, a genetic assay to taxonomically classify coralid objects using quasi non-destructive sampling. The assay classifies the analyzed sample in one of six taxonomic categories and performs at least presumptive separation of CITES-listed and non-listed species in all cases. Developmental validation experiments prove that Coral-ID is a specific, accurate and very sensitive method. As the first attempt to randomly sample corals in the trade to identify them, we applied Coral-ID on 20 precious coral objects seized by custom authorities upon import to in Switzerland. Thirteen (65%) of these samples could be analyzed; three of these were found to be presumptively CITES-listed, and 10 of them have proven to originate from non-CITES-listed species.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Commerce , Genetic Testing , Humans , Internationality , Species Specificity
2.
Sci Rep ; 10(1): 8287, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32427854

ABSTRACT

Precious coral species have been used to produce jewelry and ornaments since antiquity. Due to the high value and demand for corals, some coral beds have been heavily fished over past centuries. Fishing and international trade regulations were put in place to regulate fishing practices in recent decades. To this date, the control of precious coral exploitation and enforcement of trade rules have been somewhat impaired by the fact that different species of worked coral samples can be extremely difficult to distinguish, even for trained experts. Here, we developed methods to use DNA recovered from precious coral samples worked for jewelry to identify their species. We evaluated purity and quantity of DNA extracted using five different techniques. Then, a minimally invasive sampling protocol was tested, which allowed genetic analysis without compromising the value of the worked coral objects.The best performing DNA extraction technique applies decalcification of the skeletal material with EDTA in the presence of laurylsarcosyl and proteinase, and purification of the DNA with a commercial silica membrane. This method yielded pure DNA in all cases using 100 mg coral material and in over half of the cases when using "quasi non-destructive" sampling with sampled material amounts as low as 2.3 mg. Sequence data of the recovered DNA gave an indication that the range of precious coral species present in the trade is broader than previously anticipated.


Subject(s)
Anthozoa/classification , DNA Fingerprinting/veterinary , Jewelry/analysis , Animals , Anthozoa/genetics , Commerce/legislation & jurisprudence , Coral Reefs , DNA/isolation & purification , Internationality , Phylogeny , Sequence Analysis, DNA
3.
PLoS One ; 8(10): e75606, 2013.
Article in English | MEDLINE | ID: mdl-24130725

ABSTRACT

We report the first successful extraction of oyster DNA from a pearl and use it to identify the source oyster species for the three major pearl-producing oyster species Pinctada margaritifera, P. maxima and P. radiata. Both mitochondrial and nuclear gene fragments could be PCR-amplified and sequenced. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay in the internal transcribed spacer (ITS) region was developed and used to identify 18 pearls of unknown origin. A micro-drilling technique was developed to obtain small amounts of DNA while maintaining the commercial value of the pearls. This DNA fingerprinting method could be used to document the source of historic pearls and will provide more transparency for traders and consumers within the pearl industry.


Subject(s)
Pinctada/genetics , Animals , DNA Fingerprinting , Pinctada/classification , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length
SELECTION OF CITATIONS
SEARCH DETAIL
...