Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674891

ABSTRACT

The complex and multi-stage processes of carcinogenesis are accompanied by a number of phenomena related to the potential involvement of various chemopreventive factors, which include, among others, compounds of natural origin such as flavonols. The use of flavonols is not only promising but also a recognized strategy for cancer treatment. The chemopreventive impact of flavonols on cancer arises from their ability to act as antioxidants, impede proliferation, promote cell death, inhibit angiogenesis, and regulate the immune system through involvement in diverse forms of cellular death. So far, the molecular mechanisms underlying the regulation of apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis occurring with the participation of flavonols have remained incompletely elucidated, and the results of the studies carried out so far are ambiguous. For this reason, one of the therapeutic goals is to initiate the death of altered cells through the use of quercetin, kaempferol, myricetin, isorhamnetin, galangin, fisetin, and morin. This article offers an extensive overview of recent research on these compounds, focusing particularly on their role in combating cancer and elucidating the molecular mechanisms governing apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. Assessment of the mechanisms underlying the anticancer effects of compounds in therapy targeting various types of cell death pathways may prove useful in developing new therapeutic regimens and counteracting resistance to previously used treatments.


Subject(s)
Apoptosis , Autophagy , Ferroptosis , Flavonols , Necroptosis , Neoplasms , Pyroptosis , Humans , Flavonols/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Ferroptosis/drug effects , Autophagy/drug effects , Pyroptosis/drug effects , Apoptosis/drug effects , Necroptosis/drug effects , Animals , Cell Death/drug effects
2.
Molecules ; 28(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37764419

ABSTRACT

One of the most essential health problems is cancer, the first or second cause of death worldwide. Head and neck cancers are hard to detect due to non-specific symptoms. The treatment often relies on a combination of radio and chemotherapy. For this reason, the research of new anticancer compounds is fundamental. The natural and synthetic compounds with 1,4-naphthoquinone scaffold is characterized by high anticancer activity. The study aimed to evaluate the synthesis and anticancer activity of hybrids 1,4-naphthoquinone with thymidine derivatives. The series of compounds allows us to check the influence of the substituent in the C3' position of the thymidine moiety on the cytotoxicity against squamous cancer cell lines (SCC-9 and SCC-25) and submandibular gland cancer (A-253). An annexin V/propidium iodide (PI) co-staining assay shows that derivatives cause the apoptotic in SCC-25 and A-253 cell lines. The molecular docking study examined the interaction between the active site of the BCL-2 protein and the hybrids.


Subject(s)
Antineoplastic Agents , Head and Neck Neoplasms , Humans , Molecular Docking Simulation , Antineoplastic Agents/chemistry , Thymidine/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Cell Proliferation , Molecular Structure , Apoptosis , Structure-Activity Relationship
3.
Cells ; 12(18)2023 09 15.
Article in English | MEDLINE | ID: mdl-37759511

ABSTRACT

Head and neck cancer (HNC) therapy is limited; therefore, new solutions are increasingly being sought among flavonoids, which exhibit numerous biological properties, including potential anticancer activity. However, because they are mostly insoluble in water, are unstable and have low bioavailability, they are subjected to chemical modification to obtain new derivatives with better properties. This study aimed to synthesize and analyze new propargyloxy derivatives of galangin, kaempferol and fisetin, and to evaluate their anticancer activity against selected HNC cell lines. The obtained derivatives were assessed by spectroscopic analysis; next, their anticancer activity was evaluated using a flow cytometer and real-time cell analysis. The results showed that only the fisetin derivative was suitable for further analysis, due to the lack of crystal formation of the compound. The fisetin derivative statistically significantly increases the number of cells in the G2/M phase (p < 0.05) and increases cyclin B1 levels. A statistically significant increase in the number of apoptotic cells after being exposed to the tested compound was also observed (p < 0.05). The data indicate that the obtained fisetin derivative exhibits anticancer activity by affecting the cell cycle and increasing apoptosis in selected HNC lines, which suggests its potential use as a new medicinal agent in the future.


Subject(s)
Head and Neck Neoplasms , Kaempferols , Humans , Kaempferols/pharmacology , Flavonoids/pharmacology , Head and Neck Neoplasms/drug therapy
4.
Nutrients ; 15(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37447264

ABSTRACT

The consumption of foods that are rich in phenolic compounds has chemopreventive effects on many cancers, including breast cancer, ovarian cancer, and endometrial cancer. A wide spectrum of their health-promoting properties such as antioxidant, anti-inflammatory, and anticancer activities, has been demonstrated. This paper analyzes the mechanisms of the anticancer action of selected common flavonols, including kemferol, myricetin, quercetin, fisetin, galangin, isorhamnetin, and morin, in preclinical studies, with particular emphasis on in vitro studies in gynecological cancers and breast cancer. In the future, these compounds may find applications in the prevention and treatment of gynecological cancers and breast cancer, but this requires further, more advanced research.


Subject(s)
Breast Neoplasms , Flavonoids , Humans , Female , Flavonoids/pharmacology , Flavonoids/therapeutic use , Flavonols/pharmacology , Quercetin/pharmacology , Antioxidants/pharmacology , Breast Neoplasms/drug therapy
5.
Cells ; 12(12)2023 06 06.
Article in English | MEDLINE | ID: mdl-37371038

ABSTRACT

Despite the relative effectiveness of standard cancer treatment strategies, head and neck cancer (HNC) is still considered one of the leading causes of mortality and morbidity. While selected bioactive compounds of plant origin reveal a pro-apoptotic effect, kaempferol and fisetin flavonols have been reported as potential anti-cancer agents against malignant neoplasms. To date, their exact role in signaling pathways of head and neck cancer cells is largely unknown. Based on the various methods of cytotoxicity testing, we elucidated that kaempferol and fisetin inhibit proliferation, reduce the capacity of cell migration, and induce apoptosis in SCC-9, SCC-25, and A-253 HNC cells in a dose-dependent manner in vitro (p < 0.05, fisetin IC50 values of 38.85 µM, 62.34 µM, and 49.21 µM, and 45.03 µM, 49.90 µM, and 47.49 µM for kaempferol-SCC-9, SCC-25, and A-253, respectively). The obtained results showed that exposure to kaempferol and fisetin reduces Bcl-2 protein expression, simultaneously leading to the arrest in the G2/M and S phases of the cell cycle. Kaempferol and fisetin inhibit cell proliferation by interfering with the cell cycle, which is strongly associated with the induction of G2/M arrest, and induce apoptosis by activating caspase-3 and releasing cytochrome c in human HNC cells. In addition, investigating flavonols, by inhibiting anti-apoptotic proteins from the Bcl-2 family and damaging the mitochondrial transmembrane potential, increased the level of cytochrome c. While flavonols selectively induce apoptosis of head and neck cancer cells, they may support oncological therapy as promising agents. The discovery of new derivatives may be a breakthrough in the search for effective chemotherapeutic agents with less toxicity and thus fewer side effects.


Subject(s)
Apoptosis , Head and Neck Neoplasms , Humans , Flavonoids/pharmacology , Kaempferols/pharmacology , Cytochromes c/metabolism , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Flavonols/pharmacology , Signal Transduction , Proto-Oncogene Proteins c-bcl-2/metabolism , Head and Neck Neoplasms/drug therapy
6.
Nutrients ; 14(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35807785

ABSTRACT

Diet plays a crucial role in homeostasis maintenance. Plants and spices containing flavonoids have been widely used in traditional medicine for thousands of years. Flavonols present in our diet may prevent cancer initiation, promotion and progression by modulating important enzymes and receptors in signal transduction pathways related to proliferation, differentiation, apoptosis, inflammation, angiogenesis, metastasis and reversal of multidrug resistance. The anticancer activity of fisetin has been widely documented in numerous in vitro and in vivo studies. This review summarizes the worldwide, evidence-based research on the activity of fisetin toward various types of cancerous conditions, while describing the chemopreventive and therapeutic effects, molecular targets and mechanisms that contribute to the observed anticancer activity of fisetin. In addition, this review synthesized the results from preclinical studies on the use of fisetin as an anticancer agent. Based on the available literature, it might be suggested that fisetin has a bioactive potential to become a complementary drug in the prevention and treatment of cancerous conditions. However, more in-depth research is required to validate current data, so that this compound or its derivatives can enter the clinical trial phase.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Flavonoids/pharmacology , Flavonoids/therapeutic use , Flavonols/pharmacology , Flavonols/therapeutic use , Humans , Neoplasms/drug therapy , Neoplasms/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...