Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(11): 113105, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461526

ABSTRACT

X-ray Compton spectroscopy is one of the few direct probes of the electron momentum distribution of bulk materials in ambient and operando environments. We report high-resolution inelastic x-ray scattering experiments with high momentum and energy transfer performed at a storage-ring-based high-energy x-ray light source facility using an x-ray transition-edge sensor (TES) microcalorimeter detector. The performance was compared with a silicon drift detector (SDD), an energy-resolving semiconductor detector, and Compton profiles were measured for lithium and cobalt oxide powders relevant to lithium-ion battery research. Spectroscopic analysis of the measured Compton profiles demonstrates the high-sensitivity to the low-Z elements and oxidation states. The line shape analysis of the measured Compton profiles in comparison with computed Hartree-Fock profiles is usually limited by the resolution of the semiconductor detector. We have characterized an x-ray TES microcalorimeter detector for high-resolution Compton scattering experiments using a bending magnet source at the Advanced Photon Source with a double crystal monochromator, providing monochromatic photon energies near 27.5 keV. The momentum resolution below 0.16 atomic units (a.u.) was measured, yielding an improvement of more than a factor of 7 over a state-of-the-art SDD for the same scattering geometry. Furthermore, the lineshapes of narrow valence and broad core electron profiles of sealed lithium metal were clearly resolved using an x-ray TES compared to smeared and broadened lineshapes observed when using the SDD. High-resolution Compton scattering using the energy-resolving area detector shown here presents new opportunities for spatial imaging of electron momentum distributions for a wide class of materials with applications ranging from electrochemistry to condensed matter physics.

2.
Langmuir ; 34(51): 15839-15853, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30350702

ABSTRACT

The US government currently spends significant resources managing the legacies of the Cold War, including 300 million liters of highly radioactive wastes stored in hundreds of tanks at the Hanford (WA) and Savannah River (SC) sites. The materials in these tanks consist of highly radioactive slurries and sludges at very high pH and salt concentrations. The solid particles primarily consist of aluminum hydroxides and oxyhydroxides (gibbsite and boehmite), although many other materials are present. These form complex aggregates that dramatically affect the rheology of the solutions and, therefore, efforts to recover and treat these wastes. In this paper, we have used a combination of transmission and cryo-transmission electron microscopy, dynamic light scattering, and X-ray and neutron small and ultrasmall-angle scattering to study the aggregation of synthetic nanoboehmite particles at pH 9 (approximately the point of zero charge) and 12, and sodium nitrate and calcium nitrate concentrations up to 1 m. Although the initial particles form individual rhombohedral platelets, once placed in solution they quickly form well-bonded stacks, primary aggregates, up to ∼1500 Å long. These are more prevalent at pH = 12. Addition of calcium nitrate or sodium nitrate has a similar effect as lowering pH, but approximately 100 times less calcium than sodium is needed to observe this effect. These aggregates have fractal dimension between 2.5 and 2.6 that are relatively unaffected by salt concentration for calcium nitrate at high pH. Larger aggregates (>∼4000 Å) are also formed, but their size distributions are discrete rather than continuous. The fractal dimensions of these aggregates are strongly pH-dependent, but only become dependent on solute at high concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...