Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(9)2023 May 06.
Article in English | MEDLINE | ID: mdl-37176445

ABSTRACT

The primary objective of this study was to synthesize and characterize novel silicon-based silyl organic compounds in order to gain a deeper understanding of their potential applications and interactions with other compounds. Four new artificial silyl organic compounds were successfully synthesized: 1-O-(Trimethylsilyl)-2,3,4,6-tetra-O-acetyl-ß-d-glucopyranose (compound 1), 1-[(1,1-dimethylehtyl)diphenylsilyl]-1H-indole (compound 2), O-tert-butyldiphenylsilyl-(3-hydroxypropyl)oleate (compound 3), and 1-O-tert-Butyldiphenylsilyl-myo-inositol (compound 4). To thoroughly characterize these synthesized compounds, a combination of advanced mass spectrometric techniques was employed, including nanoparticle-assisted laser desorption/ionization mass spectrometry (NALDI-MS), Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), and triple quadrupole electrospray tandem mass spectrometry (QqQ ESI-MS/MS). These analytical methods enabled the accurate identification and characterization of the synthesized silyl organic compounds, providing valuable insights into their properties and potential applications. Furthermore, the electrospray ionization-Fourier transform ion cyclotron resonance-tandem mass spectrometry (ESI-FT-ICR-MS/MS) technique facilitated the proposal of fragmentation pathways for the ionized silyl organic compounds, contributing to a more comprehensive understanding of their behavior during mass spectrometric analysis. These findings suggest that mass spectrometric techniques offer a highly effective means of investigating and characterizing naturally occurring silicon-based silyl organic compounds, with potential implications for advancing research in various fields and applications in different industries.

2.
Inorg Chem ; 60(23): 17846-17857, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34783539

ABSTRACT

As multidrug-resistant bacteria are an emerging problem and threat to humanity, novel strategies for treatment and diagnostics are actively sought. We aim to utilize siderophores, iron-specific strong chelating agents produced by microbes, as gallium ion carriers for diagnosis, applying that Fe(III) can be successfully replaced by Ga(III) without losing biological properties of the investigated complex, which allows molecular imaging by positron emission tomography (PET). Here, we report synthesis, full solution chemistry, thermodynamic characterization, and the preliminary biological evaluation of biomimetic derivatives (FOX) of desferrioxamine E (FOXE) siderophore, radiolabeled with 68Ga for possible applications in PET imaging of S. aureus. From a series of six biomimetic analogs, which differ from FOXE with cycle length and position of hydroxamic and amide groups, the highest Fe(III) and Ga(III) stability was determined for the most FOXE alike compounds-FOX 2-4 and FOX 2-5; we have also established the stability constant of the Ga-FOXE complex. For this purpose, spectroscopic and potentiometric titrations, together with the Fe(III)-Ga(III) competition method, were used. [68Ga]Ga-FOXE derivatives uptake and microbial growth promotion studies conducted on S. aureus were efficient for compounds with a larger cavity, i.e., FOX 2-5, 2-6, and 3-5. Even though showing low uptake values, Fe-FOX 2-4 seems to be also a good Fe-source to support the growth of S. aureus. Overall, proposed derivatives may hold potential as inert and stable carrier agents for radioactive Ga(III) ions for diagnostic medical applications or interesting starting compounds for further modifications.


Subject(s)
Anti-Bacterial Agents/chemistry , Coordination Complexes/chemistry , Germanium/chemistry , Hydroxamic Acids/chemistry , Lactams/chemistry , Siderophores/chemistry , Staphylococcus aureus/isolation & purification , Anti-Bacterial Agents/chemical synthesis , Coordination Complexes/chemical synthesis , Molecular Structure , Positron-Emission Tomography , Thermodynamics
3.
ACS Omega ; 6(40): 26583-26600, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34661013

ABSTRACT

A series of 1,4-disubstituted 1,2,3-triazoles having 10-demethoxy-10-N-methylaminocolchicine core were designed and synthesized via the Cu(I)-catalyzed "click" reaction and screened for their in vitro cytotoxicity against four cancer cell lines (A549, MCF-7, LoVo, LoVo/DX) and one noncancerous cell line (BALB/3T3). Indexes of resistance (RI) and selectivity (SI) were also determined to assess the potential of the analogues to break drug resistance of the LoVo/DX cells and to verify their selectivity toward killing cancer cells over normal cells. The compounds with an ester or amide moiety in the fourth position of 1,2,3-triazole of 10-N-methylaminocolchicine turned out to have the greatest therapeutic potential (low IC50 values and favorable SI values), much better than that of unmodified colchicine or doxorubicin and cisplatin. Thus, they make a valuable clue for the further search for a drug having a colchicine scaffold.

4.
Bioorg Med Chem Lett ; 47: 128197, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34116158

ABSTRACT

A new series of 10-demethoxy-10-methylaminocolchicines bearing urea, thiourea or aguanidine moieties at position C7 has been designed, synthesized and evaluated for in vitro anticancer activity against different cancer cell lines (A549, MCF-7, LoVo, LoVo/DX). The majority of the new derivatives were active in the nanomolar range and were characterized by lower IC50 values than cisplatin or doxorubicin. Two ureas (4 and 8) and thioureas (19 and 25) were found to be good antiproliferative agents (low IC50 values and high SI) and could prove to be promising candidates for further research in the field of anticancer drugs based on the colchicine skeleton.


Subject(s)
Antineoplastic Agents/pharmacology , Colchicine/pharmacology , Guanidine/pharmacology , Thiourea/pharmacology , Urea/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Colchicine/chemical synthesis , Colchicine/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Guanidine/chemistry , Humans , Molecular Structure , Structure-Activity Relationship , Thiourea/chemistry , Urea/chemistry
5.
Eur J Med Chem ; 215: 113282, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33611191

ABSTRACT

Colchicine shows very high antimitotic activity, therefore, it is used as a lead compound for generation of new anticancer agents. In the hope of developing novel, useful drugs with more favourable pharmacological profiles, a series of doubly modified colchicine derivatives has been designed, synthesized and characterized. These novel carbamate or thiocarbamate derivatives of 10-demethoxy-10-methylaminocolchicine have been tested for their antiproliferative activity against four human cancer cell lines. Additionally, their mode of action has been evaluated as colchicine binding site inhibitors, using molecular docking studies. Most of the tested compounds showed greater cytotoxicity (IC50 in a low nanomolar range) and were characterized by a higher selectivity index than standard chemotherapeutics such as cisplatin and doxorubicin as well as unmodified colchicine. Their pharmacological use in cancer therapy could possibly be accomplished with lower dosages and result in less acute toxicity problems than in the case of colchicine. In addition, we present a QSAR model for predicting the antiproliferative activity of doubly modified derivatives for two tumour cell lines.


Subject(s)
Antineoplastic Agents/pharmacology , Colchicine/analogs & derivatives , Colchicine/pharmacology , Thiocarbamates/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Colchicine/metabolism , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Protein Binding , Quantitative Structure-Activity Relationship , Thiocarbamates/chemical synthesis , Thiocarbamates/metabolism , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/metabolism , Tubulin Modulators/pharmacology
6.
Molecules ; 25(15)2020 Aug 02.
Article in English | MEDLINE | ID: mdl-32748887

ABSTRACT

Colchicine is a well-known anticancer compound showing antimitotic effect on cells. Its high cytotoxic activity against different cancer cell lines has been demonstrated many times. In this paper we report the syntheses and spectroscopic analyses of novel colchicine derivatives obtained by structural modifications at C7 (carbon-nitrogen single bond) and C10 (methylamino group) positions. All the obtained compounds have been tested in vitro to determine their cytotoxicity toward A549, MCF-7, LoVo, LoVo/DX, and BALB/3T3 cell lines. The majority of obtained derivatives exhibited higher cytotoxicity than colchicine, doxorubicin and cisplatin against the tested cancerous cell lines. Additionally, most of the presented derivatives were able to overcome the resistance of LoVo/DX cells. Additionally, their mode of binding to ß-tubulin was evaluated in silico. Molecular docking studies showed that apart from the initial amides 1 and 2, compound 14, which had the best antiproliferative activity (IC50 = 0.1-1.6 nM), stood out also in terms of its predicted binding energy and probably binds best into the active site of ßI-tubulin isotype.


Subject(s)
Chemistry Techniques, Synthetic , Colchicine/chemical synthesis , Colchicine/pharmacology , Molecular Docking Simulation , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Colchicine/chemistry , Dose-Response Relationship, Drug , Drug Design , Humans , Mice , Molecular Dynamics Simulation , Molecular Structure , Structure-Activity Relationship
7.
Molecules ; 25(8)2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32295119

ABSTRACT

Colchicine is a well-known compound with strong antiproliferative activity that has had limited use in chemotherapy because of its toxicity. In order to create more potent anticancer agents, a series of novel colchicine derivatives have been obtained by simultaneous modification at C7 (amides and sulfonamides) and at C10 (methylamino group) positions and characterized by spectroscopic methods. All the synthesized compounds have been tested in vitro to evaluate their cytotoxicity toward A549, MCF-7, LoVo, LoVo/DX and BALB/3T3 cell lines. Additionally, the activity of the studied compounds was investigated using computational methods involving molecular docking of the colchicine derivatives to ß-tubulin. The majority of the obtained derivatives exhibited higher cytotoxicity than colchicine, doxorubicin or cisplatin against tested cancer cell lines. Furthermore, molecular modeling studies of the obtained compounds revealed their possible binding modes into the colchicine binding site of tubulin.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chemistry Techniques, Synthetic , Colchicine/analogs & derivatives , Models, Molecular , Sulfonamides/chemistry , Sulfonamides/pharmacology , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colchicine/chemical synthesis , Colchicine/chemistry , Colchicine/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Static Electricity , Structure-Activity Relationship , Sulfonamides/chemical synthesis
8.
Peptides ; 95: 116-123, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28782637

ABSTRACT

Morphiceptin (Tyr-Pro-Phe-Pro-NH2) is a selective ligand of the mu opioid receptor, an important target in pain regulation. In this study, morphiceptin was modified at positions 2 or 3 by introduction of ß2- or ß3-amino acids and additionally in position 1 by replacing Tyr by Dmt (2',6'-dimethyltyrosine), which resulted in obtaining enzymatically stable analogs with mixed opioid receptor affinity profiles. An analog of the sequence Dmt-d-Ala-(R)-ß2-1-Nal-Pro-NH2 [Nal=3-(1-naphthyl)-alanine] showed very high activity at the mu and delta receptors in the calcium mobilization functional test but did not cross the artificial membrane imitating the blood-brain barrier. In the in vivo test this analog induced strong antinociceptive effect in the writhing test in mice after intraperitioneal but also oral administration and inhibited diarrhea similarly to loperamide. Therefore, it may become an interesting lead compound in the development of peripherally restricted drugs for the treatment of gastrointestinal disorders.


Subject(s)
Endorphins/chemistry , Opioid Peptides/genetics , Pain/drug therapy , Peptidomimetics/therapeutic use , Amino Acid Sequence/genetics , Analgesics/chemistry , Analgesics/therapeutic use , Animals , Blood-Brain Barrier/drug effects , Endorphins/genetics , Endorphins/therapeutic use , Humans , Mice , Opioid Peptides/chemistry , Opioid Peptides/therapeutic use , Pain/genetics , Peptidomimetics/chemistry , Receptors, Opioid, mu/chemistry , Receptors, Opioid, mu/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...