Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Appl Opt ; 47(31): 5728-35, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-19122712

ABSTRACT

We demonstrate the modal filtering properties of newly developed single mode silver halide fibers for use at midinfrared wavelengths, centered at 10.5 microm. The goal was to achieve a suppression of nonfundamental modes greater than a factor of 300 to enable the detection and characterization of Earthlike exoplanets with a space-based nulling interferometer. Fiber segments of 4.5 cm, 10.5 cm, 15 cm, and 20 cm lengths were tested. We find that the performance of the fiber was limited not by the modal filtering properties of the core but by the unsuppressed cladding modes present at the output of the fiber. In 10.5 cm and longer sections, this effect can be alleviated by properly aperturing the output. Exclusive of coupling losses, the fiber segments of 10.5-20 cm length can provide power suppression of undesirable components of the input field by a factor of 15,000 at least. The demonstrated performance thus far surpasses our requirements, such that even very short sections of fiber provide adequate modal filtering for exoplanet characterization.

2.
Appl Opt ; 46(32): 7957-62, 2007 Nov 10.
Article in English | MEDLINE | ID: mdl-17994147

ABSTRACT

We present a technique for measuring the modal filtering ability of single mode fibers. The ideal modal filter rejects all input field components that have no overlap with the fundamental mode of the filter and does not attenuate the fundamental mode. We define the quality of a nonideal modal filter Q(f) as the ratio of transmittance for the fundamental mode to the transmittance for an input field that has no overlap with the fundamental mode. We demonstrate the technique on a 20 cm long mid-infrared fiber that was produced by the U.S. Naval Research Laboratory. The filter quality Q(f) for this fiber at 10.5 microm wavelength is 1000+/-300. The absorption and scattering losses in the fundamental mode are approximately 8 dB/m. The total transmittance for the fundamental mode, including Fresnel reflections, is 0.428+/-0.002. The application of interest is the search for extrasolar Earthlike planets using nulling interferometry. It requires high rejection ratios to suppress the light of a bright star, so that the faint planet becomes visible. The use of modal filters increases the rejection ratio (or, equivalently, relaxes requirements on the wavefront quality) by reducing the sensitivity to small wavefront errors. We show theoretically that, exclusive of coupling losses, the use of a modal filter leads to the improvement of the rejection ratio in a two-beam interferometer by a factor of Q(f).

3.
Opt Lett ; 30(24): 3344-6, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16389826

ABSTRACT

Using an integrated optics ring-resonator biosensor, we have demonstrated the detection of protein in low concentrations. We detected 0.3 nM of avidin in a buffered saline solution; the calculated detection limit is 0.1 nM (6.8 ng/ml) for avidin, which compares favorably with those of other optical protein detection techniques. Further improvement is possible. Our ring resonator utilizes Si(x)N(y)/SiO2 waveguides, which, owing to evanescent field interaction, change the effective refractive index when target molecules are immobilized on their surfaces. The selectivity of the sensor depends on the biotin surface coating, which causes the specific binding and immobilization of avidin.


Subject(s)
Biosensing Techniques/instrumentation , Microfluidic Analytical Techniques/instrumentation , Optics and Photonics/instrumentation , Photometry/instrumentation , Proteins/analysis , Transducers , Biosensing Techniques/methods , Equipment Design , Equipment Failure Analysis , Microfluidic Analytical Techniques/methods , Systems Integration
4.
Planet Space Sci ; 46(6-7): 769-77, 1998.
Article in English | MEDLINE | ID: mdl-11541819

ABSTRACT

The MOx instrument was developed to characterize the reactive nature of the martian soil. The objectives of MOx were: (1) to measure the rate of degradation of organics in the martian environment; (2) to determine if the reactions seen by the Viking biology experiments were caused by a soil oxidant and measure the reactivity of the soil and atmosphere: (3) to monitor the degradation, when exposed to the martian environment, of materials of potential use in future missions; and, finally, (4) to develop technologies and approaches that can be part of future soil analysis instrumentation. The basic approach taken in the MOx instrument was to place a variety of materials composed as thin films in contact with the soil and monitor the physical and chemical changes that result. The optical reflectance of the thin films was the primary sensing-mode. Thin films of organic materials, metals, and semiconductors were prepared. Laboratory simulations demonstrated the response of thin films to active oxidants.


Subject(s)
Exobiology/instrumentation , Mars , Oxidants/chemistry , Soil/analysis , Space Flight/instrumentation , Electron Probe Microanalysis , Humidity , Meteoroids , Organic Chemicals , Oxidants/analysis , Oxidation-Reduction , Oxygen/chemistry , Photochemistry
7.
11.
Phys Rev B Condens Matter ; 36(14): 7646-7649, 1987 Nov 15.
Article in English | MEDLINE | ID: mdl-9942542
SELECTION OF CITATIONS
SEARCH DETAIL
...