Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Adh Migr ; 13(1): 303-314, 2019 12.
Article in English | MEDLINE | ID: mdl-31331232

ABSTRACT

The anchored fibroblast-populated collagen matrix (aFPCM) is an appropriate model to study fibrocontractive disease mechanisms. Our goal was to determine if aFPCM height reduction (compaction) during development is sufficient to predict tension generation. Compaction was quantified daily by both traditional light microscopy and an optical coherence tomography (OCT) system. Contraction in aFPCM was revealed by releasing them from anchorage. We found that aFPCM contraction increase was correlated to the compaction increase. Cytochalasin D treatment reversibly inhibited compaction. Therefore, we demonstrated that aFPCM height reduction efficiently measures compaction, contraction, and relative maturity of the collagen matrix during development or treatment. In addition, we showed that OCT is suitable for effectively imaging the cross-sectional morphology of the aFPCM in culture. This study will pave the way for more efficient studies on the mechanisms of (and treatments that target) migration and contraction in wound healing and Dupuytren's contracture in a tissue environment.


Subject(s)
Collagen/metabolism , Connective Tissue/physiology , Cytochalasin D/pharmacology , Dupuytren Contracture/pathology , Stress, Physiological/physiology , Wound Healing/physiology , Cell Movement/physiology , Cells, Cultured , Cross-Sectional Studies , Fibroblasts/physiology , Humans , Microscopy , Tomography, Optical Coherence
2.
Molecules ; 24(15)2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31357389

ABSTRACT

Fibrotic diseases, such as Dupuytren's contracture (DC), involve excess scar tissue formation. The differentiation of fibroblasts into myofibroblasts is a significant mechanism in DC, as it generates tissue contraction in areas without wound openings, leading to the deposition of scar tissue, and eventually flexing one or more fingers in a restrictive fashion. Additionally, DC has a high recurrence rate. Previously, we showed that N-dihydrogalactochitosan (GC), an immunostimulant, inhibited myofibroblast differentiation in a DC fibroblast culture. Our goal of this study was to expand our previous study to include other DC and normal cell lines and other chitosan derivatives (GC and single-walled carbon nanotube-conjugated GC) to determine the specific mechanism of inhibition. Derivative-incorporated and vehicle control (water) anchored fibroblast-populated collagen matrices (aFPCM) were used to monitor compaction (anchored matrix height reduction) using microscopy and optical coherence tomography (OCT) for six days. Fibroblasts were unable to compact chitosan derivative aFPCM to the same extent as vehicle control aFPCM in repeated experiments. Similarly, chitosan derivative aFPCM contracted less than control aFPCM when released from anchorage. Proliferative myofibroblasts were identified by the presence of alpha smooth muscle actin via myofibroblast proliferative assay. In all tested conditions, a small percentage of myofibroblasts and proliferative cells were present. However, when aFPCM were treated with transforming growth factor-beta 1 (TGF-ß1), all tested samples demonstrated increased myofibroblasts, proliferation, compaction, and contraction. Although compaction and contraction were reduced, there was sufficient tension present in the chitosan derivative aFPCM to allow exogenous stimulation of the myofibroblast phenotype.


Subject(s)
Chitosan/chemistry , Chitosan/pharmacology , Collagen/chemistry , Collagen/metabolism , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Cell Proliferation , Cells, Cultured , Dupuytren Contracture , Extracellular Matrix/drug effects , Fibroblasts/drug effects , Fibrosis , Humans , Myofibroblasts/metabolism , Tomography, Optical Coherence , Transforming Growth Factor beta1/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...