Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36233154

ABSTRACT

Many plants naturally synthesize and secrete secondary metabolites that exert an allelopathic effect, offering compelling alternatives to chemical herbicides. These natural herbicides are highly important for sustainable agricultural practices. Ailanthone is the chemical responsible for the herbicidal effect of Ailanthus altissima, or "tree of heaven". The molecular studies involving ailanthone's effect on plant growth are limited. In the current study, we combined whole-transcriptome and physiology analysis of three Arabidopsis thaliana ecotypes treated with ailanthone to identify the effect of this allelopathic chemical on genes and plant growth. Our physiology results showed 50% reduced root growth, high proline accumulation, and high reactive-oxygen-species accumulation in response to ailanthone stress. Deep transcriptome analysis revealed 528, 473, and 482 statistically significant differentially expressed genes for Col-0, Cvi-0, and U112-3 under ailanthone stress, including 131 genes shared among the three accessions. The common genes included 82 upregulated and 42 downregulated genes and varied in expression at least twofold. The study also revealed that 34 of the 131 genes had a similar expression pattern when Arabidopsis seedlings were subjected to other herbicides. Differentially expressed genes significantly induced in response to ailanthone included DTXL1, DTX1, ABCC3, NDB4, UGT74E2, and AZI1. Pathways of stress, development and hormone metabolism were significantly altered under ailanthone stress. These results suggest that ailanthone triggers a significant stress response in multiple pathways similar to other herbicides.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Herbicides , ATP-Binding Cassette Transporters/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Herbicides/metabolism , Herbicides/pharmacology , Hormones/metabolism , Oxygen/metabolism , Proline/metabolism , Quassins , Stress, Physiological/genetics , Transcriptome
2.
Genomics ; 113(5): 3002-3014, 2021 09.
Article in English | MEDLINE | ID: mdl-34229041

ABSTRACT

Phenotype diversity within cultivated Capsicum chinense is particularly evident for fruit shape and size. We used this diversity in C. chinense to further unravel the genetic mechanisms underlying fruit shape variation in pepper and related Solanaceous species. We identified candidate genes for C. chinense fruit shape, explored their contribution to population structure, and characterized their potential function in pepper fruit shape. Using genotyping by sequencing, we identified 43,081 single nucleotide polymorphisms (SNPs) from diverse collections of C. chinense. Principal component, neighbor-joining tree, and population structure analyses resolved 3 phylogenetically robust clusters associated with fruit shapes. Genome-wide association study (GWAS) was used to identify associated genomic regions with various fruit shape traits obtained from image analysis with Tomato Analyzer software. In our GWAS, we selected 12 SNPs associated with locule number trait and 8 SNP markers associated with other fruit shape traits such as perimeter, area, obovoid, ellipsoid and morphometrics (5y, 6y and 7y). The SNPs in CLAVATA1, WD-40, Auxin receptor, AAA type ATPase family protein, and RNA polymerase III genes were the major markers identified for fruit locule number from our GWAS results. Furthermore, we found SNPs in tetratricopeptide-repeat thioredoxin-like 3, enhancer of ABA co-receptor 1, subunit of exocyst complex 8 and pleiotropic drug resistance proteins associated with various fruit shape traits. CLAVATA1, WD-40 and Auxin receptor genes are known genes that affect tomato fruit shape. In this study, we used Arabidopsis thaliana T-DNA insertion knockout mutants and expression profiles for functional characterization of newly identified genes and to understand their role in fruit shape.


Subject(s)
Capsicum , Solanum lycopersicum , Capsicum/genetics , Capsicum/metabolism , Fruit/genetics , Fruit/metabolism , Genome-Wide Association Study , Solanum lycopersicum/genetics , Phenotype
3.
Plants (Basel) ; 10(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498421

ABSTRACT

Acid mine drainage (AMD) is a huge environmental problem in mountain-top mining regions worldwide, including the Appalachian Mountains in the United States. This study applied a genome-wide association study (GWAS) to uncover genomic loci in Arabidopsis associated with tolerance to AMD toxicity. We characterized five major root phenotypes-cumulative root length, average root diameter, root surface area, root volume, and primary root length-in 180 Arabidopsis accessions in response to AMD-supplemented growth medium. GWAS of natural variation in the panel revealed genes associated with tolerance to an acidic environment. Most of these genes were transcription factors, anion/cation transporters, metal transporters, and unknown proteins. Two T-DNA insertion mutants, At1g63005 (miR399b) and At2g05635 (DEAD helicase RAD3), showed enhanced acidity tolerance. Our GWAS and the reverse genetic approach revealed genes involved in conferring tolerance to coal AMD. Our results indicated that proton resistance in hydroponic conditions could be an important index to improve plant growth in acidic soil, at least in acid-sensitive plant species.

4.
Article in English | MEDLINE | ID: mdl-27446531

ABSTRACT

BACKGROUND: Methicillin resistant Staphylococcus aureus (MRSA) has evolved as a serious threat to public health. It has capability to cause infections not only in health care settings but also in community. Due to the multidrug resistance shown by MRSA, there are limited treatment options for the infections caused by this superbug. Vancomycin is used as the drug of choice for the treatment of infections caused by MRSA. Different studies from all around the world have documented the emergence of strains of S. aureus those are intermediate sensitive or resistant to vancomycin. And recently, there have been reports of reduced susceptibility of MRSA to vancomycin, from Nepal also. So the main purpose of this study was to determine the minimum inhibitory concentration (MIC) of vancomycin to methicillin resistant S. aureus isolated from different clinical specimens. METHODS: Total 125 strains of S. aureus isolated from different clinical samples at KIST Medical College and Teaching Hospital, Lalitpur, Nepal from Nov 2012 to June 2013, were subjected to MRSA detection by cefoxitin disc diffusion method. The minimum inhibitory concentrations of vancomycin to confirmed MRSA strains were determined by agar dilution method. Yellow colored colonies in mannitol salt agar, which were gram positive cocci, catalase positive and coagulase positive were confirmed to be S. aureus. RESULTS: Among, total 125 S. aureus strains isolated; 47(37.6%) were MRSA. Minimum inhibitory concentrations of vancomycin to the strains of MRSA ranged from 0.125 µg/ml to 1 µg/ml. CONCLUSION: From our findings we concluded that the rate of isolation of MRSA among all the strains of S. aureus isolated from clinical samples was very high. However, none of the MRSA strains were found to be vancomycin intermediate-sensitive or vancomycin-resistant.

SELECTION OF CITATIONS
SEARCH DETAIL
...