Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 9(29): e2203008, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35988149

ABSTRACT

Individual carbon nanotubes (CNT) and graphene have unique mechanical and electrical properties; however, the properties of their macroscopic assemblies have not met expectations because of limited physical dimensions, the limited degree of dispersion of the components, and various structural defects. Here, a state-of-the-art assembly for a novel type of hybrid fiber possessing the properties required for a wide variety of multifunctional applications is presented. A simple and effective multidimensional nanostructure of CNT and graphene oxide (GO) assembled by solution processing improves the interfacial utilization of the components. Flexible GOs are effectively intercalated between nanotubes along the shape of CNTs, which reduces voids, enhances orientation, and maximizes the contact between elements. The microstructure is finely controlled by the elements content ratio and dimensions, and an optimal balance improves the mechanical properties. The hybrid fibers simultaneously exhibit exceptional strength (6.05 GPa), modulus (422 GPa), toughness (76.8 J g-1 ), electrical conductivity (8.43 MS m-1 ), and knot strength efficiency (92%). Furthermore, surface and electrochemical properties are significantly improved by tuning the GO content, further expanding the scope of applications. These hybrid fibers are expected to offer a strategy for overcoming the limitations of existing fibers in meeting the requirements for applications in the fiber industry.

2.
Sci Adv ; 8(16): eabn0939, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35452295

ABSTRACT

Theoretical considerations suggest that the strength of carbon nanotube (CNT) fibers be exceptional; however, their mechanical performance values are much lower than the theoretical values. To achieve macroscopic fibers with ultrahigh performance, we developed a method to form multidimensional nanostructures by coalescence of individual nanotubes. The highly aligned wet-spun fibers of single- or double-walled nanotube bundles were graphitized to induce nanotube collapse and multi-inner walled structures. These advanced nanostructures formed a network of interconnected, close-packed graphitic domains. Their near-perfect alignment and high longitudinal crystallinity that increased the shear strength between CNTs while retaining notable flexibility. The resulting fibers have an exceptional combination of high tensile strength (6.57 GPa), modulus (629 GPa), thermal conductivity (482 W/m·K), and electrical conductivity (2.2 MS/m), thereby overcoming the limits associated with conventional synthetic fibers.

3.
Polymers (Basel) ; 14(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35215648

ABSTRACT

The sulfur on the sulfur-assisted reduced graphene oxide (SrGO) surface provides the origin of poly(phenylene sulfide) PPS-grafting via SNAr mechanism. In-situ polymerization from sulfur on SrGO afforded surface modification of SrGO, resulting in enhanced dispersibility in PPS. The tensile strength, electrical and thermal conductivities, and flame retardancy of PPS-coated SrGO were efficiently enhanced using highly concentrated SrGO and masterbatch (MB) for industrial purposes. Three-dimensional X-ray microtomography scanning revealed that diluting MB in the PPS resin afforded finely distributed SrGO across the PPS resin, compared to the aggregated state of graphene oxide. For the samples after dilution, the thermal conductivity and flame retardancy of PPS/SrGO are preserved and typically enhanced by up to 20%. The proposed PPS/SrGO MB shows potential application as an additive for reinforced PPS due to the ease of addition during the extrusion process.

4.
Phys Chem Chem Phys ; 22(36): 20665-20672, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32895677

ABSTRACT

In this study, the effect of interfacial interaction between solvent and sheets on the exfoliation of sulfur-doped reduced graphene oxide (SrGO) sheets was studied, using molecular dynamics simulations. Four organic solvents of toluene, tetrahydrofuran, N-methyl-2-pyrrolidone, and sulfolane, were used in this simulation. An insertion simulation considering the size effect of insertion molecules was used to determine the insertion efficiency of the solvent molecules. The insertion efficiency of toluene was the best among the four solvents due to the influence of the effective thickness of the solvent. An exfoliation simulation considering electrostatic interaction was conducted to evaluate the exfoliation efficiency of the SrGO sheets. Unlike the insertion efficiency case, the sulfolane was found to have the best exfoliation efficiency among the four solvents, due to the strong electrostatic repulsion and weak attractive energy between the SrGO sheets. The exfoliation efficiency of the SrGO sheets was improved by increasing the sulfur content and the ratio of the thiol type to the total number of sulfur-doped groups. These results reveal that decreasing the attractive energy and increasing the electrostatic repulsion between the solvent and SrGO sheets are a useful way to improve the exfoliation efficiency of SrGO sheets.

5.
Nanoscale ; 11(36): 16919-16927, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31490468

ABSTRACT

With the increase in practical interest in flexible thermoelectric (TE) generators, the demand for high-performance alternatives to brittle TE materials is growing. Herein, we have demonstrated wet-spun CNT fibers with high TE performance by systematically controlling the longitudinal carrier mobility without a significant change in the carrier concentration. The carrier mobility optimized by CNT alignment increases the electrical conductivity without decreasing the thermopower, thus improving the power factor. On further adjusting the charge carriers via mild annealing, the CNT fibers exhibit a high power factor of 432 µW m-1 K-2. Based on the excellent TE performance and shape advantages for modular design of the CNT fiber, the all-carbon based flexible TE generator without an additional metal electrode has been fabricated. The flexible TE generator based on 40 pairs of p- and n-type CNT fibers shows the maximum power density of 15.4 and 259 µW g-1 at temperature differences (ΔT) of 5 and 20 K, respectively, currently one of the highest values reported for TE generators based on flexible materials. The strategy proposed here can improve the performance of flexible TE fibers by optimizing the carrier mobility without a change in the carrier concentration, and shows great potential for flexible TE generators.

6.
Phys Chem Chem Phys ; 20(45): 28616-28622, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30406230

ABSTRACT

In this study, the influences of the carboxyl functionalization of intercalators on exfoliation of graphite oxide were analyzed using molecular dynamics (MD) simulations. Molecular models of four-layered graphene oxide (GO) sheets, four different solvents (ethanol, dimethylformamide, tetrahydrofuran, and N-methyl-2-pyrrolidone), and four different intercalators (anthracene, 2-anthracenecarboxylic acid, 2,3-anthracenedicarboxylic acid, and 2,6-anthracenedicarboxylic acid) were used in the MD simulations. A separation simulation of GO sheets was performed to determine the point at which the GO sheets begin to exfoliate. An insertion simulation was used to obtain the minimum kinetic energy required for exfoliation and to calculate GO-solvent and GO-intercalator interaction energies. As the simulation result, GO-solvent and GO-intercalator interactions affected the minimum kinetic energy required for exfoliation. Having more carboxyl functional groups on the anthracene improved both the GO-intercalator interaction and the efficiency of the intercalators during exfoliation. These results reveal that increasing the interaction energy between the GO sheets and the insertion molecules is an efficient way to improve the performance of the solvents and the intercalators for the exfoliation of GO sheets.

7.
Nanotechnology ; 29(47): 475604, 2018 Nov 23.
Article in English | MEDLINE | ID: mdl-30191889

ABSTRACT

A therapeutic reduced graphene oxide (RGO) is synthesized by using fucoidan (Fu) as the reducing and surface functionalizing agent. The synthesized Fu-RGO exhibits promising characteristics for therapeutic applications such as high dispersity in aqueous media, biocompatibility, selective cytotoxicity to cancer cells, high loading capacity of the anticancer drug, and photothermal conversion effect. Therefore, Fu-GO is successfully harnessed as a combinatorial cancer treatment platform through bio-functional (Fu), chemo (doxorubicin (Dox)) and photothermal (RGO with near-infrared irradiation) modalities.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Carriers/pharmacology , Graphite/pharmacology , Neoplasms/therapy , Polysaccharides/pharmacology , Antibiotics, Antineoplastic/pharmacology , Antineoplastic Agents/chemistry , Combined Modality Therapy/methods , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Liberation , Graphite/chemistry , HEK293 Cells , HeLa Cells , Humans , Hyperthermia, Induced/methods , Infrared Rays , Oxidation-Reduction , Oxides/chemistry , Oxides/pharmacology , Polysaccharides/chemistry , Reducing Agents/chemistry , Reducing Agents/pharmacology
8.
Polymers (Basel) ; 10(6)2018 Jun 07.
Article in English | MEDLINE | ID: mdl-30966664

ABSTRACT

To meet the demand for next-generation flexible optoelectronic devices, it is crucial to accurately establish the chemical structure-property relationships of new optical polymer films from a theoretical point of view, prior to production. In the current study, computer-aided simulations of newly designed poly(ester imide)s (PEsIs) with various side groups (⁻H, ⁻CH3, and ⁻CF3) and substituted positions were employed to study substituent-derived steric effects on their optical and thermal properties. From calculations of the dihedral angle distribution of the model compounds, it was found that the torsion angle of the C⁻N imide bonds was effectively constrained by the judicious introduction of di-, tetra-, and hexa-substituted aromatic diamines with ⁻CF3 groups. A high degree of fluorination of the PEsI repeating units resulted in weaker intra- and intermolecular conjugations. Their behavior was consistent with the molecular orbital energies obtained using density functional theory (DFT). In addition, various potential energy components of the PEsIs were investigated, and their role in glass-transition behavior was studied. The van der Waals energy (EvdW) played a crucial role in the segmental chain motion, which had an abrupt change near glass-transition temperature (Tg). The more effective steric effect caused by ⁻CF3 substituents at the 3-position of the 4-aminophenyl group significantly improved the chain rigidity, and showed high thermal stability (Tg > 731 K) when compared with the ⁻CH3 substituent at the same position, by highly distorting (89.7°) the conformation of the main chain.

9.
Angew Chem Int Ed Engl ; 56(51): 16180-16185, 2017 12 18.
Article in English | MEDLINE | ID: mdl-29024369

ABSTRACT

We herein report a facile, cost-competitive, and scalable method for producing viscoelastic conductors via one-pot melt-blending using polymers and supramolecular gels composed of carbon nanotubes (CNTs), diphenylamine (DP), and benzophenone (BP). When mixed, a non-volatile eutectic liquid (EL) produced by simply blending DP with BP (1:1 molar ratio) enabled not only the gelation of CNTs (EL-CNTs) but also the dissolution of a number of commodity polymers. To make use of these advantages, viscoelastic conductors were produced via one-pot melt-blending the EL and CNTs with a model thermoplastic elastomer, poly(styrene-b-butadiene-b-styrene) (SBS, styrene 30 wt %). The resulting composites displayed an excellent electromechanical sensory along with re-mendable properties. This simple method using cost-competitive EL components is expected to provide an alternative to the use of expensive ionic liquids as well as to facilitate the fabrication of novel composites for various purposes.

10.
Angew Chem Int Ed Engl ; 56(20): 5485-5489, 2017 05 08.
Article in English | MEDLINE | ID: mdl-28334479

ABSTRACT

The coordination chemistry of plant polyphenols and metal ions can be used for coating various substrates and for creating modular superstructures. We herein explored this chemistry for the controlled release of guests from mesoporous silica nanoparticles (MSNs). The selective adsorption of tannic acids (TAs) on MSN silica walls opens the MSN mesoporous channels without disturbing mass transport. The channel may be closed by the coordination of TA with CuII ions. Upon exposure to light, photolysis of Trojan horse guests (photoacid generators, PAGs) leads to acid generation, which enables the release of payloads by decomposing the outer coordination shell consisting of TA and CuII . We also fabricated a modular assembly of MSNs on glass substrates. The photoresponsive release characteristics of the resulting film are similar to those of the individual MSNs. This method is a fast and facile strategy for producing photoresponsive nanocontainers by non-covalent engineering of MSN surfaces that should be suitable for various applications in materials science.

11.
Nanoscale ; 8(4): 2055-62, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26700058

ABSTRACT

In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests.

12.
Nanoscale ; 7(33): 14100-8, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26243510

ABSTRACT

Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm(2) V(-1) s(-1) and electron mobility of 0.17 cm(2) V(-1) s(-1) in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs.

13.
Nanotechnology ; 26(11): 115601, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25706065

ABSTRACT

New halogen/nitrogen dual-doped graphenes (X/N-G) with thermally tunable doping levels are synthesized via the thermal reduction of graphite oxide (GO) with stepwise-pyrolyzed ionic liquids. The doping process of halogen and nitrogen into the graphene lattice proceeds via substitutional or covalent bonding through the physisorption or chemisorption of in situ pyrolyzed dopant precursors. The doping process is performed by heating to 300-400 °C of ionic liquid, and the chemically assisted reduction of GO is facilitated by ionic iodine, resulting in I/N-G materials possessing about three and two orders of magnitude higher conductivity (∼22,200 S m(-1)) and charge carrier density (∼10(21) cm(-3)), compared to those of thermally reduced GO. The thermally tunable doping levels of halogen in X/N-G significantly increase the conductivity of doped graphene to ∼27,800 S m(-1).

14.
Nanotechnology ; 26(7): 075706, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25629600

ABSTRACT

Nitrogen doping in carbon nanotube (CNT) fibers using pyrolyzed ionic liquid induced interfacial hydrogen bonding between individual CNTs, enhancing mechanical properties and electrical conductivity simultaneously. In particular, the nitrogen doped CNT fiber using the ionic liquid BMI-I exhibited about 104%, 714%, and 38% increased tensile strength (0.65 N/tex), elastic modulus (83 N/tex), and electrical conductivity (1350 S cm(-1)), respectively, compared to pristine CNT fiber.

15.
ACS Nano ; 7(12): 10971-7, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24224730

ABSTRACT

A carbon nanotube yarn core graphitic shell hybrid fiber was fabricated via facile heat treatment of epoxy-based negative photoresist (SU-8) on carbon nanotube yarn. The effective encapsulation of carbon nanotube yarn in carbon fiber and a glassy carbon outer shell determines their physical properties. The higher electrical conductivity (than carbon fiber) of the carbon nanotube yarn overcomes the drawbacks of carbon fiber/glassy carbon, and the better properties (than carbon nanotubes) of the carbon fiber/glassy carbon make up for the lower thermal and mechanical properties of the carbon nanotube yarn via synergistic hybridization without any chemical doping and additional processes.

16.
ACS Appl Mater Interfaces ; 5(16): 7726-30, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23947825

ABSTRACT

Chemical post-treatment of the carbon nanotube fiber (CNTF) was carried out via intramolecular cross-dehydrogenative coupling (ICDC) with FeCl3 at room temperature. The Raman intensity ratio of the G band to the D band (IG/ID ratio) of CNT fiber increased from 2.3 to 4.6 after ICDC reaction. From the XPS measurements, the AC═C/AC-C ratio of the CNT fiber increased from 3.6 to 4.8. It is of keen interest that both the electrical conductivity and tensile strength of CNT yarn improved to 3.5 × 10(3) S/cm and 420 MPa, which is 180 and 200% higher than that of neat CNT yarn.


Subject(s)
Carbon/chemistry , Electric Conductivity , Nanotubes, Carbon/chemistry , Carbon Fiber , Spectrum Analysis, Raman
17.
Nanotechnology ; 24(18): 185604, 2013 May 10.
Article in English | MEDLINE | ID: mdl-23579433

ABSTRACT

A chemical defect healing of reduced graphene oxide (RGO) was carried out via intramolecular cross-dehydrogenative coupling (ICDC) with FeCl3 at room temperature. The Raman intensity ratio of the G-band to the D-band, the IG/ID ratio, of the RGO was increased from 0.77 to 1.64 after the ICDC reaction. From XPS measurements, the AC=C/AC-C ratio, where the peak intensities from the C=C and C-C bonds are abbreviated as AC=C and AC-C, of the RGO was increased from 2.88 to 3.79. These results demonstrate that the relative amount of sp(2)-hybridized carbon atoms is increased by the ICDC reaction. It is of great interest that after the ICDC reaction the electrical conductivity of the RGO was improved to 71 S cm(-1), which is 14 times higher than that of as-prepared RGO (5 S cm(-1)).

18.
Nano Lett ; 12(4): 1789-93, 2012 Apr 11.
Article in English | MEDLINE | ID: mdl-22260510

ABSTRACT

Highly conductive reduced graphene oxide (GO) polymer nanocomposites are synthesized by a well-organized in situ thermochemical synthesis technique. The surface functionalization of GO was carried out with aryl diazonium salt including 4-iodoaniline to form phenyl functionalized GO (I-Ph-GO). The thermochemically developed reduced GO (R-I-Ph-GO) has five times higher electrical conductivity (42,000 S/m) than typical reduced GO (R-GO). We also demonstrate a R-I-Ph-GO/polyimide (PI) composites having more than 10(4) times higher conductivity (~1 S/m) compared to a R-GO/PI composites. The electrical resistances of PI composites with R-I-Ph-GO were dramatically dropped under ~3% tensile strain. The R-I-Ph-GO/PI composites with electrically sensitive response caused by mechanical strain are expected to have broad implications for nanoelectromechanical systems.


Subject(s)
Graphite/chemistry , Nanocomposites/chemistry , Oxides/chemistry , Oxides/chemical synthesis , Temperature , Electric Conductivity , Molecular Structure , Oxidation-Reduction , Particle Size , Polymers/chemical synthesis , Polymers/chemistry , Surface Properties
20.
Nanotechnology ; 22(30): 305710, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21730750

ABSTRACT

Water-dispersible graphene was prepared by reacting graphite oxide and 6-amino-4-hydroxy-2-naphthalenesulfonic acid (ANS). X-ray diffraction study showed that the basal reflection (002) peak of graphite oxide was absent in the ANS-functionalized graphene (ANS-G), indicating crystal layer delamination. Ultraviolet-visible spectral data were recorded to assess the solubility of the ANS-G in water. Fourier transform infrared spectral analysis suggested the attachment of ANS molecules to the surface of graphene. Raman and x-ray photoelectron spectroscopy revealed that oxygen functionality in the graphite oxide had been removed during reduction. Atomic force microscopy found that the thickness of ANS-G in water was about 1.8 nm, much higher than that of single layer graphene. Thermal stability measurements also indicated successful removal of oxygen functionality from the graphite oxide and the attachment of thermally unstable ANS to the graphene surfaces. The electrical conductivity of ANS-G, determined by a four-point probe, was 145 S m(-1) at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...