Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 12852, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26238255

ABSTRACT

For the first time, proteins, a promising biocompatible and functionality-designable biomacromolecule material, acted as the host material to construct three-dimensional (3D) whispering-gallery-mode (WGM) microlasers by multiphoton femtosecond laser direct writing (FsLDW). Protein/Rhodamine B (RhB) composite biopolymer was used as optical gain medium innovatively. By adopting high-viscosity aqueous protein ink and optimized scanning mode, protein-based WGM microlasers were customized with exquisite true 3D geometry and smooth morphology. Comparable to previously reported artificial polymers, protein-based WGM microlasers here were endowed with valuable performances including steady operation in air and even in aqueous environments, and a higher quality value (Q) of several thousands (without annealing). Due to the "smart" feature of protein hydrogel, lasing spectrum was responsively adjusted by step of ~0.4 nm blueshift per 0.83-mmol/L Na2SO4 concentration change (0 ~ 5-mmol/L in total leading to ~2.59-nm blueshift). Importantly, other performances including Q, FWHM, FSR, peak intensities, exhibited good stability during adjustments. So, these protein-based 3D WGM microlasers might have potential in applications like optical biosensing and tunable "smart" biolasers, useful in novel photonic biosystems and bioengineering.

2.
Chem Commun (Camb) ; 48(11): 1680-2, 2012 Feb 04.
Article in English | MEDLINE | ID: mdl-22187098

ABSTRACT

Silver microflower arrays constructed by upright nanoplates and attached nanoparticles were fabricated inside a microfluidic channel, thus a robust catalytic microreactor for allowing in situ SERS monitoring was proposed. On-chip catalytic reduction shows that the silver microflowers have high catalytic activity and SERS enhancement.

3.
Opt Lett ; 36(15): 2871-3, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21808342

ABSTRACT

We report in this Letter fabrication of whispering-gallery-mode microdisk lasers by femtosecond laser direct writing of dye-doped resins. Not only is well-defined disk shape upheld on an inverted cone-shaped supporter, but the disk also exhibits significant lasing actions characteristic of an abrupt increase of light output and the significant narrowing of the spectral lines when the threshold is approached. This work shows that the laser micronanofabrication technology is not only applicable to passive micro-optical components, but also it may play an important role in fabrication of active optoelectronic devices and their integrated photonic circuits.

4.
Phys Chem Chem Phys ; 13(11): 4835-8, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21311800

ABSTRACT

A novel solvent responsive polymer micromachine has been successfully fabricated by two-photon photopolymerization (TPP) of methacrylate-based photoresists. The moving part of the micromachine could be easily driven by interfacial solvent polarity induced swelling and shrinking of the photopolymer networks. Furthermore, the driving performance of the micromachine could be precisely modulated by varying the laser scanning step length during fabrication.

5.
Lab Chip ; 10(21): 2902-5, 2010 Nov 07.
Article in English | MEDLINE | ID: mdl-20721411

ABSTRACT

Reported in this paper is two-photon photopolymerization (TPP) fabrication of magnetic microturbines with high surface smoothness towards microfluids mixing. As the key component of the magnetic photoresist, Fe(3)O(4) nanoparticles were carefully screened for homogeneous doping. In this work, oleic acid stabilized Fe(3)O(4) nanoparticles synthesized via high-temperature induced organic phase decomposition of an iron precursor show evident advantages in particle morphology. After modification with propoxylated trimethylolpropane triacrylate (PO(3)-TMPTA, a kind of cross-linker), the magnetic nanoparticles were homogeneously doped in acrylate-based photoresist for TPP fabrication of microstructures. Finally, a magnetic microturbine was successfully fabricated as an active mixing device for remote control of microfluids blending. The development of high quality magnetic photoresists would lead to high performance magnetically controllable microdevices for lab-on-a-chip (LOC) applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...