Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 123(49): 10631-10642, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31724862

ABSTRACT

The rectangular collocation approach makes it possible to solve the Schrödinger equation with basis functions that do not have amplitude in all regions in which wave functions have significant amplitude. Collocation points can be restricted to a small region of space. As no integrals are computed, there are no problems due to discontinuities in the potential, and there is no need to use integrable basis functions. In this paper, we show, for the Kohn-Sham equation, that machine learning can be used to drastically reduce the size of the collocation point set. This is demonstrated by solving the Kohn-Sham equations for CO and H2O. We solve the Kohn-Sham equation on a given effective potential which is a critical part of all DFT calculations, and monitor orbital energies and orbital shapes. We use a combination of Gaussian process regression and a genetic algorithm to reduce the collocation point set size by more than an order of magnitude (from about 51 000 points to 2000 points) while retaining mhartree accuracy.

2.
Chemosphere ; 231: 468-477, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31151006

ABSTRACT

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are anthropogenic chemicals widely used in industrial and consumer products. PFASs can be readily transported by water due to their relatively high solubility and polarity, and oceans are believed to be their final global sink. The heavily industrialized and urbanized Pearl River Delta in South China represents a major source of PFASs. In the present study, samples of surface waters, bottom waters, and sediments of the South China Sea (SCS) were collected during summer 2017 and 2018 to determine the level, distribution, and potential regional risk of PFASs. The PFAS concentrations in surface seawater, bottom seawater, and sediment were 125-1015 pg/L, 38-779 pg/L, and 7.5-84.2 pg/g dry weight, respectively. Perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) were the dominant PFASs in seawater, while perfluorooctanesulfonic acid (PFOS) was dominant in sediment. The PFAS alternatives 6:2 and -8:2 Cl-polyfluorinated ether sulfonate (6:2 and 8:2 Cl-PFESA) as well as hexafluoropropylene oxide dimer (HFPO-DA) were detected in the SCS for the first time. The spatial distribution of PFASs in seawater and sediment were impacted by river outflows and sea currents, and concentrations decreased from the estuaries to the offshore regions due to the dilution effect. PFAS concentrations were relatively low compared to other coastal regions worldwide, and a preliminary environmental hazard assessment showed that PFASs posed minimal risk to marine organisms in the coastal region of the SCS, with the exception of PFOS.


Subject(s)
Environmental Monitoring , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Alkanesulfonic Acids , Caprylates , China , Estuaries , Oceans and Seas , Rivers/chemistry , Seasons , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...